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CHARACTERIZATION OF TOTALLY UMBILICAL

HYPERSURFACES

THOMAS HASANIS

Abstract. This paper gives a sufficient condition for a complete hypersurface of a

Riemannian manifold of constant curvature to be umbilical. The condition will be

given by an inequality which is established between the length of the second

fundamental tensor and the mean curvature.

K. Nomizu and B. Smyth in [3] established a formula for the Laplacian of the

second fundamental form of a hypersurface M immersed with constant mean

curvature in a space M of constant sectional curvature c. Later, M. Okumura in [4]

characterized under certain conditions a totally umbilical hypersurface of a

Riemannian manifold of nonnegative constant curvature by an inequality between

the length of the second fundamental tensor and the mean curvature of the

hypersurface.

In the present article we prove the following theorem.

Theorem A. Let M be an n-dimensional (n > 3) connected complete hypersurface

immersed with constant mean curvature in an (n + l)-dimensional Riemannian

manifold M of positive constant curvature c. If the second fundamental tensor L

satisfies

trace L2 <--(trace L)2 + 2c,
n — 1

then M is a totally umbilical hypersurface and consequently a sphere.

Remark. If M is compact, Theorem A has been proved by Okumura in [4].

Finally we obtain the following result for complete minimal hypersurfaces of a

sphere. In the compact case, this has been proved by J. Simons in [6].

Theorem B. Let M be a complete minimal hypersurface of the sphere S" + i(l/Vc )

of radius l/Vc . Then Sup S > en or M is totally geodesic.

1. Preliminaries. Let M be an (n + l)-dimensional Riemannian manifold of

constant curvature c. Let <p: M-»M be an isometric immersion of an «-dimen-

sional manifold M into M. In what follows we identify M with <p(M) and p G M

with <p(p) G <p(M) c M. The tangent space T M is also identified with a subspace

of T', jAf. The Riemannian metric g of M is induced from the Riemannian metric
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g of M in such a way that

g(X,Y) = g(d<p(X),d<p(Y)),

where X, Y are vector fields of M.

We define the Weingarten map L(X) = VXN, where N is a unit normal on M

and V the covariant differentiation in M. The mean curvature H of M in M is

defined by

„      1H = — trace L.
n

When at each point of M we have trace L2 = (l/«)(trace L)2, M is called a

totally umbilical hypersurface of M. In particular, if trace L2 = 0, M is called a

totally geodesic hypersurface of M. Now, we put

ZX = LX - -(trace L)X. (1.1)
n

Applying Z to both members of (1.1), we get a globally defined linear transforma-

tion Z2, where

Z2X = L2* - -(trace L)LX + ^-(trace L)2*.
n n2

This implies that

trace Z2 = trace L2-(trace L)2, (1.2)

because Z is a symmetric linear transformation.

From equation (1.2) we conclude that trace Z2 > 0 and equality holds every-

where iff M is a totally umbilical hypersurface of M.

Finally, we denote by S the square of the norm of the second fundamental form

of M in M and by R the scalar curvature of M. Then the following relations are

well known

S = trace L2, (1.3)

R = n2H2 - S + n(n- \)c. (1.4)

2. Main results. At first we state two lemmas, which are easy consequences of a

result by Chen and Okumura [1], [2, p. 55].

Lemma 2.1. Let M be an n-dimensional hypersurface of a Riemannian manifold M

of constant curvature c. If

trace L2 <-r(trace L)2 + 2c    [resp. trace L2 <-r(trace L)2 + 2c)
n — 1 V «—1 /

then the sectional curvatures of M are nonnegative (resp. positive).

Lemma 2.2. Let M be a minimal hypersurface of the sphere S" + l(\/Vc ) of radius

1/Vc . Assume that S < en — e, with e a constant number. Then the sectional

curvatures of M are bounded below by (s — (n — 2))c/2.
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Now, let M be a complete hypersurface with constant mean curvature H in a

Riemannian manifold M with constant curvature c. We use the linear transforma-

tion Z of §1 and set/2 = trace Z2. Obviously/2 > 0 and/2 = 0 everywhere on M

iff M is totally umbilical. We repeat the same calculations as M. Okumura in [4]

and get

^A/2 >f2\cn + -(trace L)2
2 n

n-2
| trace L\f -")

(2.1)

V«(n - 1)

+ g(VL, VL).

Now, we proceed to the proofs of Theorems A and B.

Proof of Theorem A. From the assumption of the theorem and relation (1.2)

we get

1
f<

n(n - 1)

We set

= («-2) c +
(trace L)

(trace L)  + 2c.

I        (trace L)2V

\        n(n - 1) J

(2.2)

■/2

n(n - 1)

Now, since n > 2 and c > 0 there exists a positive number e0, such that

(trace L)2
0 < e0 < e, = (n - 2)\ c +

n(n - 1)

/       (trace L)2V
1/21

Then

e2 - 2(/i - 2)( c +    .   ¡    ..(trace L)2]e0 + c2(n - 2)2 > 0

or

(trace L) _      e0 | trace L|

2(« - 1)       C      n-2      V«(« - 1)

or

(trace L)2

»(« - 1)
2c

1/2

4(ii - 1)

(n-2)

(trace L)   + c« — e0
1/2

<   - trace L\
2Vn(n - 1)

+ Í4(^T)(traceL)2+c,,-eo},/2-
4(« - 1)

From (2.2) and the last inequality we obtain

0 < / <-" Itrace L\ + \  -.   -    . (trace L)2 + en - e0)
- 1) 14(« - 1) UJ

/2

or

2V"(« - 1)

/2 +     ^" ~ 2^     Itrace LI/ - en - -(trace L)2 + e0 < 0
V»(/i -1)
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and thus

en + - (trace L)2-^ ~ 2^     Itrace Llf - f2 > e0. (2.3)
n V«(/i - 1)

So, by using (2.3) the inequality (2.1) gives

|A/2 > f\ + g(VL, VL) >f\. (2.4)

Since f2 is bounded above and the sectional curvatures of M are bounded below

(see Lemma 2.1), we claim that/2 = 0 everywhere on M. In fact, if, for a pointpx

we had/2(p,) = b > 0, then from (2.4) we should have ^A/2(p,) > be0 = const >

0, and thus for all points q G M such that f2(q) > f2(px) ought to have jA/2(¿) >

be0 = const > 0, which contradicts Omori's theorem A' in [5]. So f2 = 0 every-

where on M and the proof is finished.

Now, let M be a complete minimal hypersurface of the sphere Sn+l(l/Vc) of

radius 1/Vc . Then (2.1) becomes

±AS > S(cn - S) + g(VL, VL). (2.5)

Proof of Theorem B. It is sufficient to prove the following: If Sup S < en, then

M must be totally geodesic. In fact, if Sup S < en, then there exists a positive

number e such that S < en — e everywhere on M. Then using Lemma 2.2 we

conclude that M has sectional curvatures bounded below. Also en — S > e and

(2.5) gives

{AS > Se.

Now, we proceed as in the proof of Theorem A and we conclude that S = 0

everywhere on M, i.e. M is totally geodesic.
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