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EGOROFF'S THEOREM AND THE DISTRIBUTION OF STANDARD

POINTS IN A NONSTANDARD MODEL1

C. WARD HENSON AND FRANK WATTENBERG

Abstract. We study the relationship between the Loeb measure °(*fi) of a set £

and the /¿-measure of the set S(E) = [x\*x G E) of standard points in E. If E is

in the a-algebra generated by the standard sets, then °(*f0(£) — piS(Ef). This is

used to give a short nonstandard proof of Egoroffs Theorem. If £ is an internal, *

measurable set, then in general there is no relationship between the measures of

S(£) and E. However, if *X is an ultrapower constructed using a minimal

ultrafilter on u, then *p(£) «¡ 0 implies that S(E) is a u-null set. If, in addition, y. is

a Borel measure on a compact metric space and £ is a Loeb measurable set, then

M(5(£)) <°(*f)(£) < ß(S(E))

where p and fi are the inner and outer measures for p.

The work in this paper was originally stimulated by the search for an illuminat-

ing nonstandard proof of Egoroffs Theorem. Despite the importance of such a

proof it has been surprisingly elusive (see, for example, [8] or [11]). §1 of this paper

presents a short, natural proof of Egoroffs Theorem using a result from §11 on the

distribution of standard points in a nonstandard model. The work in §11 is of

independent interest.

Throughout this paper (A', &, y) will denote a (standard) positive measure space

with y(X) finite; 91L will denote a standard higher order model of X along with the

real numbers, R; and *<3H will denote a proper nonstandard extension of <D\l. We

will always assume *'i)lt is N,-saturated, but any further assumptions will be

explicitly stated. If P is an entity in "31L, *P will denote the corresponding entity in

*91l. Thus, in particular, *y: *9r—**[0, oo) denotes the extension in *91L of y to

the * measurable sets. We use the usual notation St(x) for the standard part of a

finite nonstandard real and x «¿ y for x infinitely close toy.

I. Egoroffs Theorem. Suppose fx,f2,... is a standard sequence of measurable

functions X -> R and /: X -» 7? is also a measurable function. Egoroffs Theorem

[3] states

1.1 Egoroff's Theorem. 7/ S„ —* S pointwise almost everywhere then Sor every

e > 0 there is a set A G <$ such that y(A) < e and/„ -»/ uniSormly on X \ A.
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If {S„} satisfies the conclusion of Egoroffs Theorem we will say {/„} converges

to / nearly uniSormly. Note that Egoroffs Theorem is false without the assumption

that y(X) is finite.

The following characterization of nearly uniform convergence is essentially due

to Robinson [8].

1.2 Definition. Suppose/,/,,/2, ... are standard measurable functions X ^> R,

and x G *X. Then x is said to be a point of intrinsic nonuniformity if there is an

infinite integer v such that/,,(*) »*/(■*)• Let E denote the set of points of intrinsic

nonuniformity. (Note: E is usually external.)

1.3 Definition. Suppose A is a (possibly external) subset of *X. A is said to have

S-measure zero if for every standard e > 0 there is a standard set B G IS such that

A G*B and y(B) < e.— r-v    /

1.4 Proposition. Using the notation oj DeSinition 1.2, the Sollowing are equivalent.

(i) {/„} converges to S nearly uniSormly.

(ii) E has S-measure zero.

Proof. The proof is completely straightforward using the well-known fact that

S„-*S uniformly on a set S if and only if for every p G*S and every infinite v,

JÁP) ~ */(/>) [8, Theorem 4.6.1].

We need one more definition before proving Egoroffs Theorem.

1.5 Definition. Suppose A is a (possibly external) subset of *X. Let S(A) denote

the set of all standard points in A. That is, S(A) = {x G X\*x G A). Note S(A) is

just the standard part of A with respect to the discrete topology on X.

1.6 Proof of Egoroff's Theorem. Suppose/, —>/pointwise almost everywhere.

Hence there is a set A G 6J such that y(A) = 0 and/„ -»/pointwise on X \ A. Let

E denote the set of points of intrinsic nonuniformity. Then S(E) G A. Thus S(E)

has measure zero and by II.3 E has S-measure zero, completing the proof by 1.4.

II. The distribution of standard points in *X. The purpose of this section is to

study the relationship between the measure (in a sense to be defined below) of a set

E G*X and the standard measure of S(E). Intuitively, the standard points are

evenly distributed in *X and one might, therefore, expect the measures of E and

S(E) to be infinitely close for a reasonable class of sets E.

II. 1 Definition. Let éE be the (external) algebra, & = {*A\A G <$}, and let S be

the (external) a-algebra generated by é£. Using the Loeb-Carathéodory extension

process there is an (external) real-valued a-additive measure °(*y): S -* [0, oo) [5],

see also [8, §5.1], called S-measure. Notice °(*y)(A) = 0 if and only if A has

S-measure zero in the sense of 1.3.

II.2 Theorem. Suppose E G S. Then S(E) G ^ and °(*y)(E) = y(S(E)).

Proof. First, let 3", = {E G § |S(7Í) G <$}. % is a a-algebra since S(*X \ A) =

X \ S(A), S(AX n A2) = S(AX) n S(A2) and S(U"_i4.) = U ?-\S(AJ. Hence

S = 5,. Now we have two finite measures defined on §, yx(E) =°(*y)(E) and

y^(E) = y(S(E)). By the uniqueness part of the Caratheodory Extension Theorem,

we have yx = y? completing the proof. Notice the importance here that y(X) is

finite.
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11.3 Example. Let E be as in 1.6, the set of points of intrinsic nonuniformity for/

and (/,) where/, -»/almost everywhere. Then £ G S and °(*ft)(7i) = y(S(E)) =

0.

Proof. Let^ = {x G X\3r > k\Sr(x) - *f(x)\ > I/«}- Claim:

GO 00

e= u n*AHjt.
n-l   k-\

Proof of claim. If x G E then there is an infinite p such that /p(x) ¡« */(■*)•

Therefore, there is a finite n  such that  |/p(x) — */(■*)! > '/"• Thus x G j4

G*A„k for every finite A:,    .'.x G f| *_,*v4B)fc. Conversely, suppose

OO 00

x g u n *^,*.
n-l   A = l

Therefore there is an n such that x G D 2°-i*^«,*- Let r = {*l I AC*) ~ */(■*)! >

1/«}. 7 is internal and contains arbitrarily large finite positive integers k. There-

fore 7 contains some infinite positive integer v and |/„(x) - */(*)! > l/n. So

x G E.

One of the difficulties in applying the techiques of Nonstantard Analysis to

standard problems is converting a nonstandard object into a standard one. In

particular, if F: *X -» R is Loeb measurable and we define /: X —> R by /(x) =

F(x) then we have very little control over / In fact, / need not be measurable and

*/ need have little relationship to F. One consequence of Theorem II.2 is that the

situation is much better if F is S -measurable. More precisely, we have

11.4 Theorem. Suppose F: *X —» R is S -measurable and /: X —» R is deSined by

S(x) = F(x). Then

(1) S Is IF-measurable,

(2) {x G *X\*S(x) at F(x)} has S-measure zero.

Proof. (1) Let t G R and A = {x|/(x) > /}. Notice A = S(E) where E =

(x\F(x) >/}6§ by assumption. Hence, by Theorem II.2 /JEf and / is

^-measurable.

(2) Let °(*f): *v^Ru{oo}be given by

°Cf)(x) = Í St(*/(*))    if */(*) is finite,
\ oo if *S(x) is infiniteif *S(x) is infinite.

A straightforward argument shows °(*/) is S-measurable. Let E = {x|°(*/)(x) ¥=

F(x)}. Then £ G S and S(E) = 0. So, E has 5-measure zero by Theorem II.2.

But E = {x\*f(x) f» F(x)} completing the proof.

The obvious question to ask is whether Theorem II.2 can be extended to a larger

class of sets. A natural such question is whether for internal "measurable sets E,

*y(E) « y(S(E)). Unfortunately, the possible results in this direction are sharply

circumscribed by the following examples.

II.5 Example. Suppose X = [0, 1] and *X is an enlargement of X. Then for every

Í Ç [0, 1] and / G *[0, 1] there is an internal, *Borel set E such that S(E) = B and

*y(E) = /.
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Proof. A straightforward enlargement argument produces *finite sets Fx, F2

such that S(FX) = B, S(F2) = [0, 1] \ B and F, n F2 = 0. Let

E = (*[0,t] u FX)\F2.

11.6 Example. Suppose X = {0, l}(c0) (i.e. an element x G X is a sequence

x = (x„ x2, . . . ) of 0's and l's). Let X have the obvious probability measure. Let

*X be any proper nonstandard extension of X and let v be any infinite positive

integer. Let E = {x G *^|x, = 1). It is well known and easy to prove using the

Kolmogorov Zero-One Law that S(E) has inner measure zero and outer measure

one. But *y(E) = 1/2.

11.7 Example. We construct a nonstandard model *(DTL = CM.J / D, where J is

countable, such that there is an internal, *open set V G*[0, 1] with S(V) = 0 but

*y(V) « 1 (y is Lebesgue measure). Let X = [0, 1] and let J be the set of all finite

unions of disjoint open intervals with rational endpoints. Thus a typical element U

of J is a set U„_i(a„, bn) with ax < bx < a2 < ■ ■ ■ < b„ all rational. Notice J is

countable. If x,, x2, . . . , xk G [0, 1] let %(x,, x2, . . . , x¿) = {U G

J\xx, x2, . . . , xk G U, y(U) > 1 - l/k). Clearly the sets %(x„ x2, . . . , xk) are

nonempty and have the finite intersection property. Let D be any ultrafilter

containing all the sets Gll(xx, x2, . . . , xk). Let *9H = 9\LJ/D and let V G*X be

the *open set represented by the function F: J —» T^X) given by F(U) = {/. It is

immediate from the construction of V that *y( V) «s 1 and S( V) = 0.

Thus, in general, there is no relationship between *y(E) and y(S(E)). However,

if * X is a minimal nonstandard model (defined below) we do have some positive

results.

11.8 Definition. Suppose J = {1, 2, 3, ... } and D is an ultrafilter on J. D is

said to be minimal, see [1], [9], [10], provided whenever /: J -» J there is a set

A G D such that either / is constant on A or S is one-to-one on A. If either the

Continuum Hypothesis or Martin's Axiom holds there are many minimal ultra-

filters on J [1], [9], [10]. If D is a minimal ultrafilter on J, the nonstandard model

9R//Z) is said to be minimal. We use below the fact that minimal ultrafliters are

Ramsey [2] and therefore satisfy the strong Ramsey theorem proved by Mathias

[6], [7].

11.9 Proposition. Suppose *tyil is a minimal nonstandard model and E G*X is an

internal * measurable set such that *y(E) « 0. Then S(E) is a y-null set.

Proof. Let e = *y(E), let (Ex, E2, . . .) represent E and let en = y(E„). Hence, e

is represented by (e„ e2, . . . ). Define /: J -> J by /(«) = largest k such that

en < 1/2*. Since D is minimal there is a set A G D such that/is constant on A or S

is one-to-one on A. Since e ?» 0 the first alternative is impossible. Hence / is

one-to-one on A. Therefore
00

2  en <   2  1/2* = I-
rtS/l *-l

Now, suppose e > 0 is standard. Then there is a set B G D such that
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But x G S(E) implies x G U reBEn. Thus S(E) G U „eBEn but y(U neBF„) <

2„eÄe„ < e. This completes the proof.

If * 911 is a minimal nonstandard model, y is a Borel measure on a compact

metric space and E is Loeb measurable then considerably more can be said about

the relationship between the measures of E and S(E). The first step is the following

lemma.

11.10 Lemma. Suppose *9IL is minimal nonstandard model, y is a Borel measure on

a compact metric space K and E is a Loeb measurable set such that S(E) = 0. Then
°(*yXE) = 0.

Proof. Suppose E is Loeb measurable, S(E) = 0 and °(*y)(E) > 0. Then there

is a standard e > 0 and an internal, *measurable set F G E such that *y(F) > e.

Let (Fn) be a sequence of Borel subsets of K which determines F as an element of

*91t. We then have that the set Y = {n\ y(F„) > e) is an element of the minimal

ultrafilter D which is used to construct *(31L. The Ramsey Theorem for D due to

Mathias [6] will be used to show that there exists Z G D with Z G Y and

H {F„\n GZ}^0.

Since this intersection is contained in S(F), this contradicts our assumption that

S(F) = 0.
Given an infinite set W GN, set [ Wf = { V\ V is an infinite subset of W). On

[NY put the usual topology: the basic open neighborhoods of W G [NY are the

sets

{V e[/V]"V* <n(k G V++k G W)}

for n = 1, 2, ... . The Ramsey Theorem of Mathias implies that if 51 Ç [NY is

analytic relative to this topology, there exists some W G D such that either

[ Wf clor[ Wf n 51 = 0. (By [2] a minimal ultrafilter is Ramsey; for a proof

of Mathias' result that Ramsey ultrafilters have this much stronger property see

[7]-)
For our purposes we use the family

51 = {W G[N]W\ n {Fn\n G W) =£0).

First we show that 51 is analytic. Consider the set S G [Nf X K defined by

S = {(^,x)|xG n{F>G W}}.

Since each F„ is a Borel subset of K, S is a Borel set in the product space

[N]" x K. Also 51 is the image of S under the coordinate projection from

[N]a X K onto [NY- Since K is a compact metric space, it follows that 51 is

analytic in [NY [4, Chapter XIII].

Now apply Mathias' theorem, obtaining a set W G D such that [WY G 51 or

[WY n 51 = 0. In the first case we have Z = Y n W G D and n {F„\n G Z)

^ 0 as desired. Thus it suffices to prove the second case is impossible. For any

W G D the set Z = Y n W is infinite and y(Fn) > e > 0 holds for every n G Z.

Since y is a finite measure it follows that

p( H   U {Fk\k G Z and k>n})>e.
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Thus we may choose x and an infinite subset V of Z with x G Fk for all k G V.

Therefore V G [WY D 51, which completes the proof.

11.11 Remark. In case y is a regular Borel measure on K, a relatively simple case

of Mathias' theorem can be used in the proof of 11.10. In that case we may assume

that the sets Fn are closed (replacing e by e/2 and each Fn by a closed subset).

Then the family 51 is actually a closed subset of [NY as can be seen by a direct

proof.

11.12 Theorem. Suppose *<DTL is a minimal nonstandard model and y is a Borel

measure on a compact metric space K. ISE G*K is Loeb measurable then

y(S(E)) <°(>(£)) < ß{S(E))

where y, y are the inner and outer measures Sor y.

Proof. It suffices to prove y(S(E)) <°(*y(E)) since the other inequality follows

from this one applied to *K \ E.

Let B be a standard measurable set such that B G S(E) and y(B) = y(S(E)).

Let A =*B\ E. Notice S(A) = 0 and A is Loeb measurable so by Lemma 11.10

°(*y)(A) = 0. Hence since °(*y)(A) + °(*y)(E) >°(*y)(B) = y(S(E)) we have

°(*y)(E) > y(S(E)) completing the proof.

Example II.6 shows that even if E is internal and *measurable, 5(7?) need not be

p-measurable. The following Corollary gives a necessary and sufficient condition

for S(E) to be p-measurable when E is an internal, *Borel set in a minimal

nonstandard model *91L.

11.13 Corollary. Let *<$\l, y and K be as in 11.10. For each internal * Borel set

E G*K, S(E) is measurable with respect to the completion o/p ¡Sand only iS there is

a standard Borel set B such that E and *B diSSer by a set of infinitesimal *y measure.

Proof. If such a set B exists, then S(E) equals B up to a p-null set, by II.9.

For the converse, suppose .SXTi) is measurable with respect to the completion of

y and let B G S(E) be a Borel set such that S(7i) \ B is a y null set. Then

S(*B \ E) is empty and S(E \ *B) is a p-null set, so that the symmetric difference

of *B and E has infinitesimal *y measure, by 11.12.

11.14 Remark. Some restriction on the measure space of y is necessary in order

that 11.10 should be true. For example, take Borel subsets En of (0, l}(oo) as in

Example II.6, so that the internal set E determined by (En) has internal measure

1/2, yet S(E) has inner measure 0 and outer measure 1. Then consider the measure

space fl = {0, 1}(00) \ S(E) with the restricted measure y. Let E'n = En \ S(E), so

(E'n) are measurable subsets of fl. If E' is the internal 'measurable subset of *Q

determined by the sequence (E'n), then S(E') = 0 yet *y(E') = 1/2.

11.15 Remark. Lemma 11.10 which is the key step in the proof of Theorem 11.12

has a very nice standard interpretation as follows. Suppose D is a minimal

ultrafilter on the set {1, 2, 3, ... } and Ex, E2, ... is a sequence of Borel subsets of

a compact metric space K with y a finite Borel measure on K. If inf y(E„) > 0 then

there is a point x G Tí such that {n|x G En) G D. Notice this is a strengthening of

the usual result that there is a point x G K which is in infinitely many 7s„'s.
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