EGOROFF'S THEOREM AND THE DISTRIBUTION OF STANDARD POINTS IN A NONSTANDARD MODEL¹

C. WARD HENSON AND FRANK WATTENBERG

ABSTRACT. We study the relationship between the Loeb measure $^{0}(*\mu)$ of a set E and the μ -measure of the set $S(E)=\{x|^*x\in E\}$ of standard points in E. If E is in the σ -algebra generated by the standard sets, then $^{0}(*\mu)(E)=\mu(S(E))$. This is used to give a short nonstandard proof of Egoroff's Theorem. If E is an internal, * measurable set, then in general there is no relationship between the measures of S(E) and E. However, if *X is an ultrapower constructed using a minimal ultrafilter on ω , then $^*\mu(E)\approx 0$ implies that S(E) is a μ -null set. If, in addition, μ is a Borel measure on a compact metric space and E is a Loeb measurable set, then

$$\mu(S(E)) < {}^{\scriptscriptstyle 0}(\ast \mu)(E) < \bar{\mu}(S(E))$$

where μ and $\bar{\mu}$ are the inner and outer measures for μ .

The work in this paper was originally stimulated by the search for an illuminating nonstandard proof of Egoroff's Theorem. Despite the importance of such a proof it has been surprisingly elusive (see, for example, [8] or [11]). §I of this paper presents a short, natural proof of Egoroff's Theorem using a result from §II on the distribution of standard points in a nonstandard model. The work in §II is of independent interest.

Throughout this paper (X, \mathcal{F}, μ) will denote a (standard) positive measure space with $\mu(X)$ finite; \mathfrak{M} will denote a standard higher order model of X along with the real numbers, R; and $*\mathfrak{M}$ will denote a proper nonstandard extension of \mathfrak{M} . We will always assume $*\mathfrak{M}$ is \aleph_1 -saturated, but any further assumptions will be explicitly stated. If P is an entity in \mathfrak{M} , *P will denote the corresponding entity in $*\mathfrak{M}$. Thus, in particular, $*\mu: *\mathfrak{F} \to *[0, \infty)$ denotes the extension in $*\mathfrak{M}$ of μ to the * measurable sets. We use the usual notation St(x) for the standard part of a finite nonstandard real and $x \approx y$ for x infinitely close to y.

- I. Egoroff's Theorem. Suppose f_1, f_2, \ldots is a standard sequence of measurable functions $X \to R$ and $f: X \to R$ is also a measurable function. Egoroff's Theorem [3] states
- I.1 EGOROFF'S THEOREM. If $f_n \to f$ pointwise almost everywhere then for every $\varepsilon > 0$ there is a set $A \in \mathcal{F}$ such that $\mu(A) < \varepsilon$ and $f_n \to f$ uniformly on $X \setminus A$.

Received by the editors July 30, 1979 and, in revised form, February 5, 1980; presented to the Society, January 4, 1980 at the Special Session on Nonstandard Analysis, San Antonio, Texas.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 03H05.

¹This work was partially supported by grants from the National Science Foundation.

If $\{f_n\}$ satisfies the conclusion of Egoroff's Theorem we will say $\{f_n\}$ converges to f nearly uniformly. Note that Egoroff's Theorem is false without the assumption that $\mu(X)$ is finite.

The following characterization of nearly uniform convergence is essentially due to Robinson [8].

- I.2 DEFINITION. Suppose f, f_1, f_2, \ldots are standard measurable functions $X \to R$, and $x \in {}^*X$. Then x is said to be a *point of intrinsic nonuniformity* if there is an infinite integer ν such that $f_{\nu}(x) \approx {}^*f(x)$. Let E denote the set of points of intrinsic nonuniformity. (Note: E is usually external.)
- I.3 DEFINITION. Suppose A is a (possibly external) subset of *X. A is said to have S-measure zero if for every standard $\varepsilon > 0$ there is a standard set $B \in \mathcal{F}$ such that $A \subseteq B$ and $\mu(B) < \varepsilon$.
 - I.4 Proposition. Using the notation of Definition I.2, the following are equivalent.
 - (i) $\{f_n\}$ converges to f nearly uniformly.
 - (ii) E has S-measure zero.

PROOF. The proof is completely straightforward using the well-known fact that $f_n \to f$ uniformly on a set S if and only if for every $p \in {}^*S$ and every infinite ν , $f_n(p) \approx {}^*f(p)$ [8, Theorem 4.6.1].

We need one more definition before proving Egoroff's Theorem.

- I.5 DEFINITION. Suppose A is a (possibly external) subset of *X. Let S(A) denote the set of all standard points in A. That is, $S(A) = \{x \in X | *x \in A\}$. Note S(A) is just the standard part of A with respect to the discrete topology on X.
- I.6 PROOF OF EGOROFF'S THEOREM. Suppose $f_n \to f$ pointwise almost everywhere. Hence there is a set $A \in \mathcal{F}$ such that $\mu(A) = 0$ and $f_n \to f$ pointwise on $X \setminus A$. Let E denote the set of points of intrinsic nonuniformity. Then $S(E) \subseteq A$. Thus S(E) has measure zero and by II.3 E has S-measure zero, completing the proof by I.4.
- II. The distribution of standard points in *X. The purpose of this section is to study the relationship between the measure (in a sense to be defined below) of a set $E \subseteq *X$ and the standard measure of S(E). Intuitively, the standard points are evenly distributed in *X and one might, therefore, expect the measures of E and S(E) to be infinitely close for a reasonable class of sets E.
- II.1 DEFINITION. Let \mathscr{C} be the (external) algebra, $\mathscr{C} = \{*A | A \in \mathscr{F}\}$, and let S be the (external) σ -algebra generated by \mathscr{C} . Using the Loeb-Carathéodory extension process there is an (external) real-valued σ -additive measure ${}^{0}(*\mu)$: $S \to [0, \infty)$ [5], see also [8, §5.1], called S-measure. Notice ${}^{0}(*\mu)(A) = 0$ if and only if A has S-measure zero in the sense of I.3.
 - II.2 THEOREM. Suppose $E \in \mathbb{S}$. Then $S(E) \in \mathcal{F}$ and $O(*\mu)(E) = \mu(S(E))$.

PROOF. First, let $\mathfrak{T}_1 = \{E \in \mathbb{S} \mid S(E) \in \mathfrak{F}\}$. \mathfrak{T}_1 is a σ -algebra since $S(*X \setminus A) = X \setminus S(A)$, $S(A_1 \cap A_2) = S(A_1) \cap S(A_2)$ and $S(\bigcup_{n=1}^{\infty} A_n) = \bigcup_{n=1}^{\infty} S(A_n)$. Hence $\mathbb{S} = \mathfrak{T}_1$. Now we have two finite measures defined on \mathbb{S} , $\mu_1(E) = {}^0(*\mu)(E)$ and $\mu_2(E) = \mu(S(E))$. By the uniqueness part of the Caratheodory Extension Theorem, we have $\mu_1 = \mu_2$ completing the proof. Notice the importance here that $\mu(X)$ is finite.

II.3 EXAMPLE. Let E be as in I.6, the set of points of intrinsic nonuniformity for f and (f_n) where $f_n \to f$ almost everywhere. Then $E \in \mathbb{S}$ and $f(*\mu)(E) = \mu(S(E)) = 0$.

PROOF. Let $A_{n,k} = \{x \in X | \exists r \ge k | f_r(x) - f(x) | \ge 1/n \}$. Claim:

$$E = \bigcup_{n=1}^{\infty} \bigcap_{k=1}^{\infty} {}^{*}A_{n,k}.$$

PROOF OF CLAIM. If $x \in E$ then there is an infinite ρ such that $f_{\rho}(x) \approx f(x)$. Therefore, there is a finite n such that $|f_{\rho}(x) - f(x)| > 1/n$. Thus $x \in A_{n,\rho} \subseteq A_{n,k}$ for every finite k. $\therefore x \in \bigcap_{k=1}^{\infty} A_{n,k}$. Conversely, suppose

$$x \in \bigcup_{n=1}^{\infty} \bigcap_{k=1}^{\infty} {}^{*}A_{n,k}.$$

Therefore there is an n such that $x \in \bigcap_{k=1}^{\infty} {}^*A_{n,k}$. Let $T = \{k | |f_k(x) - {}^*f(x)| > 1/n\}$. T is internal and contains arbitrarily large finite positive integers k. Therefore T contains some infinite positive integer ν and $|f_{\nu}(x) - {}^*f(x)| > 1/n$. So $x \in E$.

One of the difficulties in applying the techiques of Nonstantard Analysis to standard problems is converting a nonstandard object into a standard one. In particular, if $F: {}^*X \to \mathbb{R}$ is Loeb measurable and we define $f: X \to \mathbb{R}$ by f(x) = F(x) then we have very little control over f. In fact, f need not be measurable and *f need have little relationship to F. One consequence of Theorem II.2 is that the situation is much better if F is S-measurable. More precisely, we have

- II.4 THEOREM. Suppose $F: {}^*X \to \mathbb{R}$ is S-measurable and $f: X \to \mathbb{R}$ is defined by f(x) = F(x). Then
 - (1) f is \mathcal{F} -measurable,
 - (2) $\{x \in {}^*X|^*f(x) \approx F(x)\}\$ has S-measure zero.

PROOF. (1) Let $t \in \mathbb{R}$ and $A = \{x | f(x) > t\}$. Notice A = S(E) where $E = \{x | F(x) > t\} \in \mathbb{S}$ by assumption. Hence, by Theorem II.2 $A \in \mathcal{F}$ and f is \mathcal{F} -measurable.

(2) Let ${}^{0}(*f)$: $*X \to \mathbb{R} \cup \{\infty\}$ be given by

$${}^{0}(*f)(x) = \begin{cases} \operatorname{St}(*f(x)) & \text{if } *f(x) \text{ is finite,} \\ \infty & \text{if } *f(x) \text{ is infinite.} \end{cases}$$

A straightforward argument shows ${}^{0}(*f)$ is \mathbb{S} -measurable. Let $E = \{x|^{0}(*f)(x) \neq F(x)\}$. Then $E \in \mathbb{S}$ and $S(E) = \emptyset$. So, E has S-measure zero by Theorem II.2. But $E = \{x|^{*}f(x) \approx F(x)\}$ completing the proof.

The obvious question to ask is whether Theorem II.2 can be extended to a larger class of sets. A natural such question is whether for internal *measurable sets E, * $\mu(E) \approx \mu(S(E))$. Unfortunately, the possible results in this direction are sharply circumscribed by the following examples.

II.5 EXAMPLE. Suppose X = [0, 1] and *X is an enlargement of X. Then for every $B \subseteq [0, 1]$ and $t \in *[0, 1]$ there is an internal, *Borel set E such that S(E) = B and $*\mu(E) = t$.

PROOF. A straightforward enlargement argument produces *finite sets F_1 , F_2 such that $S(F_1) = B$, $S(F_2) = [0, 1] \setminus B$ and $F_1 \cap F_2 = \emptyset$. Let

$$E = (*[0, t] \cup F_1) \setminus F_2.$$

II.6 EXAMPLE. Suppose $X = \{0, 1\}^{(\infty)}$ (i.e. an element $x \in X$ is a sequence $x = (x_1, x_2, \dots)$ of 0's and 1's). Let X have the obvious probability measure. Let *X be any proper nonstandard extension of X and let ν be any infinite positive integer. Let $E = \{x \in {}^*X | x_{\nu} = 1\}$. It is well known and easy to prove using the Kolmogorov Zero-One Law that S(E) has inner measure zero and outer measure one. But ${}^*\mu(E) = 1/2$.

II.7 Example. We construct a nonstandard model * $\mathfrak{M} = \mathfrak{M}^J/D$, where J is countable, such that there is an internal, *open set $V \subseteq *[0, 1]$ with $S(V) = \emptyset$ but * $\mu(V) \approx 1$ (μ is Lebesgue measure). Let X = [0, 1] and let J be the set of all finite unions of disjoint open intervals with rational endpoints. Thus a typical element U of J is a set $\bigcup_{n=1}^k (a_n, b_n)$ with $a_1 < b_1 \le a_2 < \cdots < b_n$ all rational. Notice J is countable. If $x_1, x_2, \ldots, x_k \in [0, 1]$ let $\mathfrak{A}(x_1, x_2, \ldots, x_k) = \{U \in J | x_1, x_2, \ldots, x_k \notin U, \mu(U) > 1 - 1/k \}$. Clearly the sets $\mathfrak{A}(x_1, x_2, \ldots, x_k)$ are nonempty and have the finite intersection property. Let D be any ultrafilter containing all the sets $\mathfrak{A}(x_1, x_2, \ldots, x_k)$. Let * $\mathfrak{M} = \mathfrak{M}^J/D$ and let $V \subseteq *X$ be the *open set represented by the function $F: J \to P(X)$ given by F(U) = U. It is immediate from the construction of V that * $\mu(V) \approx 1$ and $S(V) = \emptyset$.

Thus, in general, there is no relationship between $*\mu(E)$ and $\mu(S(E))$. However, if *X is a minimal nonstandard model (defined below) we do have some positive results.

II.8 DEFINITION. Suppose $J = \{1, 2, 3, ...\}$ and D is an ultrafilter on J. D is said to be *minimal*, see [1], [9], [10], provided whenever $f: J \to J$ there is a set $A \in D$ such that either f is constant on A or f is one-to-one on A. If either the Continuum Hypothesis or Martin's Axiom holds there are many minimal ultrafilters on J [1], [9], [10]. If D is a minimal ultrafilter on J, the nonstandard model \mathfrak{M}^J/D is said to be *minimal*. We use below the fact that minimal ultrafilters are Ramsey [2] and therefore satisfy the strong Ramsey theorem proved by Mathias [6], [7].

II.9 PROPOSITION. Suppose *M is a minimal nonstandard model and $E \subseteq X$ is an internal *measurable set such that * $\mu(E) \approx 0$. Then S(E) is a μ -null set.

PROOF. Let $e = {}^*\mu(E)$, let (E_1, E_2, \dots) represent E and let $e_n = \mu(E_n)$. Hence, e is represented by (e_1, e_2, \dots) . Define $f: J \to J$ by f(n) = largest k such that $e_n \le 1/2^k$. Since E is minimal there is a set E is one-to-one on E. Since E is one-to-one on E. Since E is one-to-one on E. Therefore

$$\sum_{n\in\mathcal{A}}e_n\leqslant\sum_{k=1}^\infty 1/2^k=1.$$

Now, suppose $\varepsilon > 0$ is standard. Then there is a set $B \in D$ such that

$$\sum_{n\in B}e_n\leqslant \varepsilon.$$

But $x \in S(E)$ implies $x \in \bigcup_{r \in B} E_n$. Thus $S(E) \subseteq \bigcup_{n \in B} E_n$ but $\mu(\bigcup_{n \in B} E_n) \le \sum_{n \in B} e_n \le \varepsilon$. This completes the proof.

If *M is a minimal nonstandard model, μ is a Borel measure on a compact metric space and E is Loeb measurable then considerably more can be said about the relationship between the measures of E and S(E). The first step is the following lemma.

II.10 LEMMA. Suppose * \mathfrak{M} is minimal nonstandard model, μ is a Borel measure on a compact metric space K and E is a Loeb measurable set such that $S(E) = \emptyset$. Then $O(*\mu)(E) = 0$.

PROOF. Suppose E is Loeb measurable, $S(E) = \emptyset$ and ${}^{0}(*\mu)(E) > 0$. Then there is a standard $\varepsilon > 0$ and an internal, *measurable set $F \subseteq E$ such that ${}^{*}\mu(F) > \varepsilon$. Let (F_n) be a sequence of Borel subsets of K which determines F as an element of ${}^{*}\mathfrak{M}$. We then have that the set $Y = \{n | \mu(F_n) > \varepsilon\}$ is an element of the minimal ultrafilter D which is used to construct ${}^{*}\mathfrak{M}$. The Ramsey Theorem for D due to Mathias [6] will be used to show that there exists $Z \in D$ with $Z \subseteq Y$ and

$$\cap \{F_n | n \in Z\} \neq \emptyset.$$

Since this intersection is contained in S(F), this contradicts our assumption that $S(F) = \emptyset$.

Given an infinite set $W \subseteq \mathbb{N}$, set $[W]^{\omega} = \{V | V \text{ is an infinite subset of } W\}$. On $[N]^{\omega}$ put the usual topology: the basic open neighborhoods of $W \in [N]^{\omega}$ are the sets

$$\left\{ V \in [N]^{\omega} \forall k \leq n \ (k \in V \leftrightarrow k \in W) \right\}$$

for $n = 1, 2, \ldots$. The Ramsey Theorem of Mathias implies that if $\Re \subseteq [N]^{\omega}$ is analytic relative to this topology, there exists some $W \in D$ such that either $[W]^{\omega} \subseteq \Re$ or $[W]^{\omega} \cap \Re = \emptyset$. (By [2] a minimal ultrafilter is Ramsey; for a proof of Mathias' result that Ramsey ultrafilters have this much stronger property see [7].)

For our purposes we use the family

$$\mathfrak{R} = \{ W \in [N]^{\omega} | \cap \{ F_n | n \in W \} \neq \emptyset \}.$$

First we show that $\mathfrak R$ is analytic. Consider the set $S \subseteq [N]^\omega \times K$ defined by

$$\mathbb{S} = \{(W, x) | x \in \bigcap \{F_n | n \in W\}\}.$$

Since each F_n is a Borel subset of K, S is a Borel set in the product space $[N]^{\omega} \times K$. Also \mathfrak{R} is the image of S under the coordinate projection from $[N]^{\omega} \times K$ onto $[N]^{\omega}$. Since K is a compact metric space, it follows that \mathfrak{R} is analytic in $[N]^{\omega}$ [4, Chapter XIII].

Now apply Mathias' theorem, obtaining a set $W \in D$ such that $[W]^{\omega} \subseteq \Re$ or $[W]^{\omega} \cap \Re = \emptyset$. In the first case we have $Z = Y \cap W \in D$ and $\bigcap \{F_n | n \in Z\} \neq \emptyset$ as desired. Thus it suffices to prove the second case is impossible. For any $W \in D$ the set $Z = Y \cap W$ is infinite and $\mu(F_n) > \varepsilon > 0$ holds for every $n \in Z$. Since μ is a finite measure it follows that

$$\mu\Big(\bigcap_{n\in\mathbb{N}}\bigcup \{F_k|k\in\mathbb{Z} \text{ and } k>n\}\Big)>\varepsilon.$$

Thus we may choose x and an infinite subset V of Z with $x \in F_k$ for all $k \in V$. Therefore $V \in [W]^{\omega} \cap \Re$, which completes the proof.

II.11 REMARK. In case μ is a regular Borel measure on K, a relatively simple case of Mathias' theorem can be used in the proof of II.10. In that case we may assume that the sets F_n are closed (replacing ε by $\varepsilon/2$ and each F_n by a closed subset). Then the family \Re is actually a closed subset of $[N]^{\omega}$ as can be seen by a direct proof.

II.12 THEOREM. Suppose *M is a minimal nonstandard model and μ is a Borel measure on a compact metric space K. If $E \subseteq K$ is Loeb measurable then

$$\mu(S(E)) \leq {}^0(*\mu(E)) \leq \bar{\mu}(S(E))$$

where $\mu,\,\bar{\mu}$ are the inner and outer measures for $\mu.$

PROOF. It suffices to prove $\mu(S(E)) \leq {}^{0}(*\mu(E))$ since the other inequality follows from this one applied to $*K \setminus \overline{E}$.

Let B be a standard measurable set such that $B \subseteq S(E)$ and $\mu(B) = \underline{\mu}(S(E))$. Let $A = *B \setminus E$. Notice $S(A) = \emptyset$ and A is Loeb measurable so by Lemma II.10 ${}^{0}(*\mu)(A) = 0$. Hence since ${}^{0}(*\mu)(A) + {}^{0}(*\mu)(E) > {}^{0}(*\mu)(B) = \underline{\mu}(S(E))$ we have ${}^{0}(*\mu)(E) > \mu(S(E))$ completing the proof.

Example II.6 shows that even if E is internal and *measurable, S(E) need not be μ -measurable. The following Corollary gives a necessary and sufficient condition for S(E) to be μ -measurable when E is an internal, *Borel set in a minimal nonstandard model * \mathfrak{N} .

II.13 COROLLARY. Let *M, μ and K be as in II.10. For each internal *Borel set $E \subseteq *K$, S(E) is measurable with respect to the completion of μ if and only if there is a standard Borel set B such that E and *B differ by a set of infinitesimal * μ measure.

PROOF. If such a set B exists, then S(E) equals B up to a μ -null set, by II.9.

For the converse, suppose S(E) is measurable with respect to the completion of μ and let $B \subseteq S(E)$ be a Borel set such that $S(E) \setminus B$ is a μ null set. Then $S(*B \setminus E)$ is empty and $S(E \setminus *B)$ is a μ -null set, so that the symmetric difference of *B and E has infinitesimal $*\mu$ measure, by II.12.

II.14 REMARK. Some restriction on the measure space of μ is necessary in order that II.10 should be true. For example, take Borel subsets E_n of $\{0, 1\}^{(\infty)}$ as in Example II.6, so that the internal set E determined by (E_n) has internal measure 1/2, yet S(E) has inner measure 0 and outer measure 1. Then consider the measure space $\Omega = \{0, 1\}^{(\infty)} \setminus S(E)$ with the restricted measure μ . Let $E'_n = E_n \setminus S(E)$, so (E'_n) are measurable subsets of Ω . If E' is the internal *measurable subset of * Ω determined by the sequence (E'_n) , then $S(E') = \emptyset$ yet * $\mu(E') = 1/2$.

II.15 REMARK. Lemma II.10 which is the key step in the proof of Theorem II.12 has a very nice standard interpretation as follows. Suppose D is a minimal ultrafilter on the set $\{1, 2, 3, \ldots\}$ and E_1, E_2, \ldots is a sequence of Borel subsets of a compact metric space K with μ a finite Borel measure on K. If $\inf \mu(E_n) > 0$ then there is a point $x \in K$ such that $\{n | x \in E_n\} \in D$. Notice this is a strengthening of the usual result that there is a point $x \in K$ which is in infinitely many E_n 's.

REFERENCES

- 1. A. Blass, The Rudin-Keisler ordering of P-points, Trans. Amer. Math. Soc. 179 (1973), 145-166.
- 2. D. Booth, Ultrafilters on a countable set, Ann. Math. Logic 2 (1970), 1-24.
- 3. P. R. Halmos, Measure theory, Van Nostrand, Princeton, N.J., 1950.
- 4. K. Kuratowski and A. Mostowski, Set theory with an introducton to descriptive set theory, North-Holland, Amsterdam, 1976.
- 5. P. Loeb, Conversion from nonstandard to standard measure spaces and applications to probability theory, Trans. Amer. Math. Soc. 211 (1975), 113-122.
- 6. A. R. D. Mathias, Solution of problems of Choquet and Puritz, Conference in Mathematical Logic '70, Lecture Notes in Math., vol. 255, Springer-Verlag, Berlin and New York, 1972, pp. 204-210.
- 7. K. R. Milliken, Completely separable families and Ramsey's theorem, J. Combinatorial Theory 19 (1975), 318-334.
 - 8. A. Robinson, Non-standard analysis, North-Holland, Amsterdam, 1974.
- 9. M. Rudin, Types of ultrafilters, Topology Seminar, Wisconsin, R. H. Bing and R. J. Bean (eds.), Princeton Univ. Press, Princeton, N.J., 1966.
- 10. W. Rudin, Homogeneity problems in the theory of Čech compactifications, Duke Math. J. 23 (1956), 409-420.
- 11. K. D. Stroyan and W. A. J. Luxemburg, Introduction to the theory of infinitesimals, Academic Press, New York, 1976.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, ILLINOIS 61801

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MASSACHUSETTS, AMHERST, MASSACHUSETTS 01003