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COMPATIBLE RELATIONS OF MODULAR

AND ORTHOMODULAR LATTICES

DIETMAR SCHWEIGERT

Abstract. Let L be a modular lattice of finite length. L is a projective geometry if

and only if L has only trivial tolerances.

A binary relation 9 is called a tolerance of an algebra 31 = (A, ñ) if 9 is reflexive,

symmetric and compatible with the operations of St. The tolerances D = {(a, a)\a

G A] and A2 are called the trivial tolerances of St. Obviously every congruence

relation of 21 is also a tolerance of St. If L is a lattice then we consider R =

{(a, b)\a, b G A, a < b) which is also a compatible relation of L. The lattice of the

subalgebras p with D G p G R will be denoted by S and the meet operation of S1

by n.
These different kinds of relations were already studied by Hashimoto [4] and by

Grätzer and E. T. Schmidt, [7], [6]. The following theorem is a generalization of a

result of G. Grätzer and E. T. Schmidt concerning congruence relations.

Theorem 1. Let 7 be the lattice oS tolerances oS L and S the lattice oj subalgebras

p with D G p G R. Then 7 and S are isomorphic.

Proof. We consider the order-preserving function t: T —* S defined by t(r¡) = r¡

D R, t] G T, and furthermore s: S -» 7 defined by s(p) = & p G S, in the follow-

ing way. (a, 6)6| iff (a A b, b) G p, (a A b, a) G p, (a, a \J b) G p and (b, a V

b) G p. It is clear that £ is reflexive and symmetric. If (ax, bx) G £ and (a2, b^ G £

then (ax A bx, bx) G p and (a2 A b2, b^ G p and therefore ((ax A bx) V (a2 A bj;

bx V b2) G p. As axy a2> (ax A bx) V (a2 A b¿ and bx\J b2> (ax A bx) V (a2

A b2) we have ((ax V a2) A (bx V b2), bx\/ b-¿) G p. Similarly we prove the three

other conditions and have (ax V û2, bx V ¿2) G £. In the same way we can show

that £ is compatible with the operation A- The function s is also order-preserving.

We have t ° s(p) = r(£) = £ n 7?. If (c, d) G £ n R then we have (c, ¿) = (c A

d, d) G p. If (a, b) G p then (a, b) G R and (a /\b,b)G p, (a A b, a) G p, (a, a V

b) G p and (b, a \J b) G p and therefore (a, ¿>) G £ n R. We have t ° s = ls and

í ° f = 1 j- is proved similarly.

Theorem 2. Zyei 7 be an orthomodular lattice. A binary relation 9 of L is a

congruence relation ¿S and only ¡S 9 is reflexive, symmetric and compatible with join

and meet.
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Proof. As L is relatively complemented 9 is a lattice congruence of L [4], [7]. It

remains to show that from a 9 b we have a' 9 b'. We assume a < b and have

a /\b' 9 b /\a' and hence b' 9 (b A a') V b'. As ¿>' < a' we get by the orthomodu-

lar b' V W Ab) — a' hence a' 9 b'. If a Ç b then we consider a Ab 9 a V b and

derive a' A b' 9 a' \/ b'.

Remark. Every orthomodular lattice L is an algebra of a Malcev variety. If 9 is a

tolerance of 7 and is therefore compatible with the orthocomplementation of L

then 9 is also a congruence relation and vice versa [3], [9]. From [8, p. 663,

Hilfssatz] we can derive
-

Theorem 3. Let L be a relatively complemented ortholattice. L is simple if and only

if L has as a lattice only trivial tolerances.

Theorem 4. If a modular lattice L of finite length has only trivial tolerances then L

is atomistic.

Proof. For every element a G L we define a+ = inf{¿>j¿> -< a} if a > 0 and

a+ = 0 else. In a modular lattice of finite length we have (a V b)* = a+ V b+ [3,

p. 269, Lemma 6.1(e)]. We consider the following binary relation p = {(a, b)\a < b,

b+ < a] which is reflexive and compatible with join and meet. Obviously we have

D G p G R and as L has only trivial tolerance we conclude from Theorem 1 that

p = R. As (0, 1) G R we have 1+ = 0 and hence L is coatomistic and comple-

mented [1, Theorem IV.6].

Theorem 4 and the well-known results on modular geometric lattices give rise to

the following theorems.

Theorem 5. Let L be a modular lattice of finite length. L is a projective geometry if

and only if L has only trivial tolerances.

Theorem 6. Let L be an arguesian lattice of finite length I, I > 3. L is isomorphic

to the lattice of all subspaces of a vector space over some division ring if and only if L

has only trivial tolerances.

These results cannot be extended to lattices of infinite length. The restriction is

necessary since the relation a p b iff a < b and codimé(a) < oo will generate a

proper nontrivial tolerance relation on the subspace lattice of an infinite-dimen-

sional projective space.
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