COMPATIBLE RELATIONS OF MODULAR AND ORTHOMODULAR LATTICES

DIETMAR SCHWEIGERT

ABSTRACT. Let L be a modular lattice of finite length. L is a projective geometry if and only if L has only trivial tolerances.

A binary relation θ is called a tolerance of an algebra $\mathfrak{A}=(A,\Omega)$ if θ is reflexive, symmetric and compatible with the operations of \mathfrak{A} . The tolerances $D=\{(a,a)|a\in A\}$ and A^2 are called the trivial tolerances of \mathfrak{A} . Obviously every congruence relation of \mathfrak{A} is also a tolerance of \mathfrak{A} . If L is a lattice then we consider $R=\{(a,b)|a,b\in A,a\leqslant b\}$ which is also a compatible relation of L. The lattice of the subalgebras ρ with $D\subseteq \rho\subseteq R$ will be denoted by S and the meet operation of S by \cap .

These different kinds of relations were already studied by Hashimoto [4] and by Grätzer and E. T. Schmidt, [7], [6]. The following theorem is a generalization of a result of G. Grätzer and E. T. Schmidt concerning congruence relations.

THEOREM 1. Let T be the lattice of tolerances of L and S the lattice of subalgebras ρ with $D \subseteq \rho \subseteq R$. Then T and S are isomorphic.

PROOF. We consider the order-preserving function $t: T \to S$ defined by $t(\eta) = \eta \cap R$, $\eta \in T$, and furthermore $s: S \to T$ defined by $s(\rho) = \xi, \rho \in S$, in the following way. $(a, b) \in \xi$ iff $(a \land b, b) \in \rho$, $(a \land b, a) \in \rho$, $(a, a \lor b) \in \rho$ and $(b, a \lor b) \in \rho$. It is clear that ξ is reflexive and symmetric. If $(a_1, b_1) \in \xi$ and $(a_2, b_2) \in \xi$ then $(a_1 \land b_1, b_1) \in \rho$ and $(a_2 \land b_2, b_2) \in \rho$ and therefore $((a_1 \land b_1) \lor (a_2 \land b_2); b_1 \lor b_2) \in \rho$. As $a_1 \lor a_2 \ge (a_1 \land b_1) \lor (a_2 \land b_2)$ and $b_1 \lor b_2 \ge (a_1 \land b_1) \lor (a_2 \land b_2)$ we have $((a_1 \lor a_2) \land (b_1 \lor b_2), b_1 \lor b_2) \in \rho$. Similarly we prove the three other conditions and have $(a_1 \lor a_2, b_1 \lor b_2) \in \xi$. In the same way we can show that ξ is compatible with the operation \land . The function s is also order-preserving. We have $t \circ s(\rho) = t(\xi) = \xi \cap R$. If $(c, d) \in \xi \cap R$ then we have $(c, d) = (c \land d, d) \in \rho$. If $(a, b) \in \rho$ then $(a, b) \in R$ and $(a \land b, b) \in \rho$, $(a \land b, a) \in \rho$, $(a, a \lor b) \in \rho$ and $(b, a \lor b) \in \rho$ and therefore $(a, b) \in \xi \cap R$. We have $t \circ s = 1_S$ and $s \circ t = 1_T$ is proved similarly.

Theorem 2. Let L be an orthomodular lattice. A binary relation θ of L is a congruence relation if and only if θ is reflexive, symmetric and compatible with join and meet.

Received by the editors January 21, 1980. 1980 Mathematics Subject Classification. Primary 06C05; Secondary 06C15.

PROOF. As L is relatively complemented θ is a lattice congruence of L [4], [7]. It remains to show that from $a \theta b$ we have $a' \theta b'$. We assume $a \leq b$ and have $a \wedge b' \theta b \wedge a'$ and hence $b' \theta (b \wedge a') \vee b'$. As $b' \leq a'$ we get by the orthomodular $b' \vee (a' \wedge b) = a'$ hence $a' \theta b'$. If $a \leq b$ then we consider $a \wedge b \theta a \vee b$ and derive $a' \wedge b' \theta a' \vee b'$.

REMARK. Every orthomodular lattice L is an algebra of a Malcev variety. If θ is a tolerance of L and is therefore compatible with the orthocomplementation of L then θ is also a congruence relation and vice versa [3], [9]. From [8, p. 663, Hilfssatz] we can derive

THEOREM 3. Let L be a relatively complemented ortholattice. L is simple if and only if L has as a lattice only trivial tolerances.

THEOREM 4. If a modular lattice L of finite length has only trivial tolerances then L is atomistic.

PROOF. For every element $a \in L$ we define $a^+ = \inf\{b | b < a\}$ if a > 0 and $a^+ = 0$ else. In a modular lattice of finite length we have $(a \lor b)^+ = a^+ \lor b^+$ [3, p. 269, Lemma 6.1(e)]. We consider the following binary relation $\rho = \{(a, b) | a \le b, b^+ \le a\}$ which is reflexive and compatible with join and meet. Obviously we have $D \subseteq \rho \subseteq R$ and as L has only trivial tolerance we conclude from Theorem 1 that $\rho = R$. As $(0, 1) \in R$ we have $1^+ = 0$ and hence L is coatomistic and complemented [1, Theorem IV.6].

Theorem 4 and the well-known results on modular geometric lattices give rise to the following theorems.

THEOREM 5. Let L be a modular lattice of finite length. L is a projective geometry if and only if L has only trivial tolerances.

THEOREM 6. Let L be an arguesian lattice of finite length l, l > 3. L is isomorphic to the lattice of all subspaces of a vector space over some division ring if and only if L has only trivial tolerances.

These results cannot be extended to lattices of infinite length. The restriction is necessary since the relation $a \rho b$ iff $a \le b$ and $\operatorname{codim}_b(a) < \infty$ will generate a proper nontrivial tolerance relation on the subspace lattice of an infinite-dimensional projective space.

REFERENCES

- 1. G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1967.
- 2. I. Chaida, J. Niederle and B. Zelinka, On existence conditions for compatible tolerances, Czechoslovak Math. J. 26 (1976), 304-311.
 - 3. G. D. Findlay, Reflexive homomorphic relations, Canad. Math. Bull. 3 (1960), 131-132.
- 4. J. Hashimoto, Congruence relations and congruence classes in lattices, Osaka J. Math. 15 (1963), 71-86.
 - 5. C. Hermann, S-verklebte Summen von Verbänden, Math. Z. 130 (1973), 255-274.

- 6. G. Grätzer, General lattice theory, Stuttgart, 1978.
- 7. G. Grätzer and E. T. Schmidt, On congruence lattices of lattices, Acta Math. Acad. Sci. Hungar. 13 (1962), 178-185.
- 8. M. Kamara and D. Schweigert, Eine Charakterisierung polynomvollständiger Polaritätsverbände, Arch. Math. (Basel) 30 (1978), 661-664.
 - 9. H. Werner, A Mal'cev condition for admissible relations, Algebra Universalis 3 (1973), 263.
- 10. R. Wille, Eine Charakterisierung endlicher, ordnungspolynomvollständiger Verbände, Arch. Math. (Basel) 28 (1977), 557-560.
 - FB Mathematik, Universität Kaiserslautern, 675 Kaiserslautern, West Germany