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SPEED-UP BY THEORIES WITH INFINITE MODELS

R. STATMAN

Abstract. We prove that if 5 is a finite set of schemata and A is a sentence

undecided by S such that 5 u {-i^) bas an infinite model then S u {A} is an

unbounded speed-up of S for substitution instances of tautologies. As a corollary,

we obtain a conjecture of Parikh's.

I. Let P be any of the usual (schematic) formulations of predicate logic with

equality, relation and function symbols, and individual constants and let S be a

finite set of schemata; by 'S (^ A ' we mean that there is a P-derivation of A from

(substitution instances of members of) S with < n inferences (lines). We shall

prove the following:

Theorem. Suppose that A is a sentence undecided by S and S u {-i A} has an

infinite model, then there is a number n such that for each number m there is a

substitution instance of a tautology B with S U {A} \£ B and S\f B.

In short S u {A} is an unbounded speed-up of S for substitution instances of

tautologies.

II. Since for any such Px and P2 it is easy to find a function / satisfying

S [^ B => S \%p- B, it suffices to set P = NE„ for NE, the system of natural

(deduction) rules for predicate logic with equality (see for example 3.1.6, p. 249 of

[3], or the proof of Lemma 2 below). We consider the usual first-order language on

-», ± and V; for the proof it will be convenient to distinguish relation constants

from relation parameters, the latter being the arguments of substitutions.

Let S and A be fixed as above; if C is a propositional formula, built up from

propositional variables, —» and J_, a code F of C is any formula —\A —» B where B

is obtained from C by a 1-1 substitution of equations u, = v¡ for propositional

variables p, such that all the w, and t>, are distinct. Note that if F is a code of C

then; S N F.<=> .C is a tautology (this only requires that S u {-<A} has a > 2

element model), and S u {A} ^~ F. Consequently, it suffices to prove the follow-

ing:

There is no number m such that if -i A —» B is the code of a tautology then

Su{^A}\^B.

We shall prove the following bounded speed-up result:

There is a function/such that

SU{^A}^B^\^B
-
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for codes of tautologies -\Ai —» B, where NE„ is the quantifier-free fragment of

NE, (see 3.1.6, p. 249 of [3]).

Our result then follows from the routine:

Proposition. There is no number n s.t.for codes of tautologies —\A^>B, [jgr B.

III. A quantifier-free formula is said to be 'simple' if each of its prime subfor-

mulae has the form

(a) m = v, or

(b)Uux • • ■ u„ for U a relation parameter.

In particular, a simple formula contains no nonlogical constants. Let lg(7i) =df the

number of occurrences of logical operations and prime subformulae in B:

Lemma 1. There is a function f s.t. for simple B if B is valid then  | \X      B.

Proof. If r is a set of simple prime formulae let pm(r) =df the number of

individual parameters occurring in equations in T: so, in particular, pm(r) < T- 2.

Observe that by the method of 1.5.2 on p. 237 of [3] if B is a simple prime formula

and T h B then T\~ Bforn = 2pm(Tu<*». In addition if A is a set of simple prime

formulae and T f-WA then for some B G A, T1= B.

Now suppose that T and A are collections of simple formulae and A -» B is

simple then

ru^Au{^,}h4±    and    {A2} u T u nAJ^ ± => (1)

{Ax^A2}uTli -iàpft*±±,

and

KJuru nAu {-.^2>h^ -L => ru -.Au {-.(>«,-»^Jp^-L. (2)

Let lg(r) = 2^ er lg(A); it follows easily from the above that

r^wA^ru -.a^ j.

for n = 4Ig(r)+lg(A) so we can set/(x) =df 4X + 1.

By a substitution we mean a substitution of relation terms Ax, • • • xnA (with the

restriction that each x, occurs in A) for relation parameters under the definition:

Ax, • ■ • x„^(x, • • • xn)tx ■ ■ ■ t„ =àiA(tx ■ ■ ■ t„).

For what follows we refer the reader to 4.1-2, pp. 251-255 of [3].

If 9 and <i> are substitutions, then 9<f> is their composition.

If F¡ is a finite set of relation terms and F = Fx • • • F„, then 9 [ F is the

substitution defined by

(9 \ F)U = 9U   if U occurs in a member of some F¡,

= U   otherwise.

We say that 9 unifies F if for each 1 < i < n, card(9" Ft) = 1.

If F¡ is a finite set of relation terms and F = F, • • • Fn, then lg(F) is the

maximum logical complexity of a relation term belonging to some F¡ and rel(F) is

the total number of relation symbols occurring in members of the Fv
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If 9  is a substitution,  then lg(0) =df max{lg(9U);   U G dorn 9).  Note that

lg(9<b) < lg(0) • lg(<i>) and lg(9F) < lg(9) • lg(F) where 9F = „, 0"F, • • • 9"Fn.

In [3] we proved the following lemma (4.2.1).

Suppose that F¡ is a finite set of formulae, F = F, • • • Fn, and 9 unifies F, then

there are sustitutions </>,, </>2 such that

(1)0, unifies F,

(2)9 \ F= (<¡>2<bx) r F, and
(3) lg(<i>,) < lg(F)m where m = 2TeKF).

Let 5 be a finite set of schemata.

Lemma 2. There is a function f s.t. for each NEx-derivation D from S there is an

NEx-derivation D* from S and a substitution 9 s.t.

(1) D = 9D*, and

(2) if A occurs in D* then lg(A) < /(length(T))).

Proof. Let w be an injective assignment of 0-ary relation parameters to the

formula occurrences of D and let S* be a finite set of schemata s.t.

(i) each member of S* is a substitution instance in the unrestricted sense of a

member of S,

(ii) each substitution instance in the unrestricted sense of a member of S is a

substitution instance in the restricted sense of a member of S. By a copy of a

schema we mean the schema up to a permutation of relation parameters. Let V\a/

assign to each occurrence of an instance of a member of S* as an assumption in D

a copy of the associated member of S* so that different occurrences are assigned

copies on disjoint sets of new relation parameters. To each formula occurrence in

D we assign a sequence of finite sets of formulae as follows (Bi-+ X means X is

assigned to B).

(a) A formula occurrence which is the conclusion of an inference by a rule other

than = is assigned the sets assigned to the inference in 4.2.2 on p. 253 of [3].

Namely:

(i) If B is the conclusion of

(A) ¥=0
C

A^C

then

B h> {w(F) -* w(C): F G (A)} u {w(B)}.

(ii) If B is the conclusion of

C

A^C

then

B^{U^w(C),w(B)}

for U a new 0-ary relation parameter.
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(iii) If B is the conclusion of

H*)

B

then

£r-»{w(_L), ±}{w(C):C G (-,£)} u {w(B)^±}.

(iv) If B is the conclusion of

A -+B       A

B

then
B y^ {w(A) ^ w(B), w(A ->£)}.

(v) If B is the conclusion of

A(u)

VxA(x)

then
B h» {w(A(u)), Uu}{w(\/xA(x)), Vxt/x}

for U a new 1-ary relation parameter and u a proper parameter,

(vi) If B is the conclusion of

A

VxA
then

Bh>{w(A), U}{w(VxA),VxU)

for U a new 0-ary relation parameter,

(vii) If B is the conclusion of

Vx^(x)

A\t)

then

B h> {w(A(t)), Ut}{w(VxA(x)), Vxc/x}

for U a new 1-ary relation parameter, and x actually occurring free in A(x).

(viii) If B is the conclusion of

VxA

A
then

B^{w(A), U){w(\fxA),\/xU)

for U a new 0-ary relation parameter.

(b) If B is the conclusion of

A(g)      a%b

A(b)

then

B^{w(A(a)), Ua}{w(A(b)), Ub}{w(a% b), a© b]

for U a new 1-ary relation parameter.
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(c) If B is the conclusion of

A        a%b

A

then

B r^{w(a), U}{w(B), U}{w(a © b), a © b)

for U a new 0-ary relation parameter.

(d) If B is an axiom occurrence then

Bv^{w(B), Vx(x = x)}.

(e) If B is an occurrence of an instance of a member of S* as an assumption then

B^{w(B),\m/(B)}

(f) Otherwise, B h» {w(B)}, where a © b means ambiguously a = b and b = a.

(Below, in order to apply Lemma 4.2.1 of [3] we shall allow relation constants to

be the arguments of substitutions.)

Let F be the sequence of all such sets, then there is a substitution 9 such that 9

unifies F, 9R = R for each relation constant in F, and for each occurrence A in D

we have A = 9w(A). By Lemma 4.2.1 of [3, p. 252] there are <¡>x<¡>2 satisfying the

conditions (1), (2), and (3) stated there; let D* result from D by replacing each

formula occurrence A by <bxw(A) (and apply a permutation of relation symbols to

replace <f>xR by R).

We now compute an upper bound for lg(A) for A occurring in D*. Let

m = max{lg(ß): B G T*} and k = max{rel(5): B G S*}, then lg(F) < max{m, 3}

and rel(F) < (2 • lh(D) + 1) • max{fc, 2}. Now lg(^) < lg(</>,) • lg(F); thus there is

a linear e s.t. lg(A) < 2^W\ where 2\ = 2(2"\

Proposition. Suppose S has an infinite model then there is a function f s.t. for

simple B,

I n |/(«)

Proof. Note that if 9A = B and B is simple then A is simple. Also, if A is simple

and S f A then A is valid. The proposition now follows from the lemmas.

III. One special case of the theorem is that Theorem 4 of [2] holds for any of the

usual formulations of first-order arithmetic (the corresponding result for the

e-calculus can be found in [1, Theorem 2, p. 107]). More precisely, analysis is an

unbounded speed-up of arithmetic for quantifier-free formulae.
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