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SPEED-UP BY THEORIES WITH INFINITE MODELS
R. STATMAN

ABSTRACT. We prove that if S is a finite set of schemata and A4 is a sentence
undecided by S such that § U { - A4} has an infinite model then S U {4} is an
unbounded speed-up of S for substitution instances of tautologies. As a corollary,
we obtain a conjecture of Parikh’s.

I. Let P be any of the usual (schematic) formulations of predicate logic with
equality, relation and function symbols, and individual constants and let S be a
finite set of schemata; by ‘S| A4’ we mean that there is a P-derivation of 4 from
(substitution instances of members of) § with < n inferences (lines). We shall
prove the following:

THEOREM. Suppose that A is a sentence undecided by S and S U { A} has an
infinite model, then there is a number n such that for each number m there is a
substitution instance of a tautology B with S U {A} E B and Sl% B.

In short S U {4} is an unbounded speed-up of S for substitution instances of
tautologies.

II. Since for any such P, and P, it is easy to find a function f satisfying
S |—,’f—| B= s} (:) B, it suffices to set P = NE,, for NE, the system of natural
2

(deduction) rules for predicate logic with equality (see for example 3.1.6, p. 249 of
[3], or the proof of Lemma 2 below). We consider the usual first-order language on
—, 1 and V; for the proof it will be convenient to distinguish relation constants
from relation parameters, the latter being the arguments of substitutions.

Let S and A4 be fixed as above; if C is a propositional formula, built up from
propositional variables, — and L, a code F of C is any formula -4 — B where B
is obtained from C by a 1-1 substitution of equations u; = v; for propositional
variables p; such that all the u; and v; are distinct. Note that if F is a code of C
then; S F F.= .C is a tautology (this only requires that S U {4} has a > 2
element model), and S U {4} 'Nil_:. F. Consequently, it suffices to prove the follow-
ing:

There is no number m such that if =4 — B is the code of a tautology then

Su {4} |-NLIEI B.
We shall prove the following bounded speed-up result:
There is a function f such that

SU (A} B=E B
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for codes of tautologies —4:— B, where NE, is the quantifier-free fragment of
NE, (see 3.1.6, p. 249 of [3]).
Our result then follows from the routine:

PROPOSITION. There is no number n s.t. for codes of tautologies - A — B, }F'l'i-o B.

III. A quantifier-free formula is said to be ‘simple’ if each of its prime subfor-
mulae has the form

(@) u=v,0r

®)Uu, - - - u, for U a relation parameter.
In particular, a simple formula contains no nonlogical constants. Let 1g(B) = the
number of occurrences of logical operations and prime subformulae in B:

LEMMA 1. There is a function f s.t. for simple B if B is valid then A (113(1:‘? B.

Proor. If T is a set of simple prime formulae let pm(I') =, the number of
individual parameters occurring in equations in I': so, in particular, pm(T) <T- 2.
Observe that by the method of 1.5.2 on p. 237 of [3] if B is a simple prime formula
and T'F B then T |- B for n = 2P™TV (8D, In addition if A is a set of simple prime
formulae and I F\X/A then for some B € A, T F B.

Now suppose that I' and A are collections of simple formulae and A — B is
simple then

Tu-Au{4}fg L and {4}ulTu-AKg L= 1
{4,> 4, UT U —APSESS L,

and
{4 JUTU AU ("4} L = Tu —AU {~(4,> D)} e L. ()
Let Ig(T) = 2, <1 lg(A4); it follows easily from the above that
TEWA=STU —Akg L

for n = 4'8M+18® 50 we can set f(x) =4 4° + 1.

By a substitution we mean a substitution of relation terms Ax, - - - x,4 (with the
restriction that each x; occurs in A4) for relation parameters under the definition:

}‘xl Tt an(xl ttt xn)tl Tt tn =de(tl ctt tn)‘

For what follows we refer the reader to 4.1-2, pp. 251-255 of [3].

If § and ¢ are substitutions, then ¢ is their composition.

If F, is a finite set of relation terms and F = F,- - - F,, then @ | F is the
substitution defined by

(0} F)U = 8U if U occurs in a member of some F,,

= U otherwise.
We say that 6 unifies F if foreach 1 <i < n,card(§”F)) = 1.
If F, is a finite set of relation terms and F = F, - - - F,, then lg(F) is the
maximum logical complexity of a relation term belonging to some F; and rel(F) is
the total number of relation symbols occurring in members of the F,.
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If § is a substitution, then lg(8) =4 max{lg(AU); U € dom @}. Note that
lg(8¢) < 1g(8) - 1g(¢) and 1g(9F) < 1g(8) - 1g(F) where OF = 0" F, - - - 8"F,.
In [3] we proved the following lemma (4.2.1).

Suppose that F; is a finite set of formulae, F = F, - - - F,, and 0 unifies F, then
there are sustitutions ¢, ¢, such that

(1) ¢, unifies F,

(@01 F=(o9) 1 F,and

(3) lg(¢,) < Ig(F)™ where m = 25D,

Let S be a finite set of schemata.

LEMMA 2. There is a function f s.t. for each NE,-derivation D from S there is an
NE,-derivation D* from S and a substitution 0 s.t.

(1) D = OD*, and

(2) if A occurs in D* then 1g(A4) < f(length(D)).

PrOOF. Let w be an injective assignment of O-ary relation parameters to the
formula occurrences of D and let S* be a finite set of schemata s.t.

(i) each member of S* is a substitution instance in the unrestricted sense of a
member of S,

(ii) each substitution instance in the unrestricted sense of a member of S is a
substitution instance in the restricted sense of a member of S. By a copy of a
schema we mean the schema up to a permutation of relation parameters. Let \an/
assign to each occurrence of an instance of a member of S* as an assumption in D
a copy of the associated member of S* so that different occurrences are assigned
copies on disjoint sets of new relation parameters. To each formula occurrence in
D we assign a sequence of finite sets of formulae as follows (B + X means X is
assigned to B).

(a) A formula occurrence which is the conclusion of an inference by a rule other
than = is assigned the sets assigned to the inference in 4.2.2 on p. 253 of [3].
Namely:

(1) If B is the conclusion of

(A)#* D
_Cc
A->C

then
B {w(F)—>w(C): F €(A4)} u {w(B)}.
(i) If B is the conclusion of

C
A->C

then
B {U—-w(C), w(B)}

for U a new 0O-ary relation parameter.
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(iii) If B is the conclusion of

(- B)
L
B

then
B {w(Ll), L}{w(C):C €(~B)} U {w(B)—> L}.
(iv) If B is the conclusion of
A—>B A
B
then
B {w(4) > w(B), w(4 - B)}.
(v) If B is the conclusion of
A(u)
VxA(x)

then
B {w(A(u)), Uu}{w(VxA(x)), VxUx}
for U a new l-ary relation parameter and u a proper parameter.
(vi) If B is the conclusion of
A

VxA
then

B {w(A4), U}{w(Vx4), VxU}
for U a new 0O-ary relation parameter.
(vii) If B is the conclusion of
VxA(x)
A(1)
then
B {w(A(2)), Ur}{w(VxA(x)), VxUx}
for U a new l-ary relation parameter, and x actually occurring free in A(x).
(viii) If B is the conclusion of
VxA

A
then

B> {w(A), U} {w(VxA4),VxU}
for U a new 0-ary relation parameter.
(b) If B is the conclusion of

A(a) a8b
A(b)
then
B> {w(A(a)), Ua){w(A(b)), Ub}{w(a © b), a © b}
for U a new l-ary relation parameter.
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(c) If B is the conclusion of

A a8 b
A
then
B {w(a), U}{w(B), U}{w(a S b),a® b}
for U a new 0O-ary relation parameter.
(d) If B is an axiom occurrence then

B {w(B), Vx(x = x)}.
(e) If B is an occurrence of an instance of a member of S$* as an assumption then

B~ {w(B), W (B)}

(f) Otherwise, B — {w(B)}, where a © b means ambiguously a = b and b = a.

(Below, in order to apply Lemma 4.2.1 of [3] we shall allow relation constants to
be the arguments of substitutions.)

Let F be the sequence of all such sets, then there is a substitution 8 such that 4
unifies F, R = R for each relation constant in F, and for each occurrence 4 in D
we have 4 = fw(A4). By Lemma 4.2.1 of [3, p. 252] there are ¢,¢, satisfying the
conditions (1), (2), and (3) stated there; let D* result from D by replacing each
formula occurrence 4 by ¢,w(A) (and apply a permutation of relation symbols to
replace ¢,R by R).

We now compute an upper bound for lg(4) for 4 occurring in D*. Let
m = max{lg(B): B € I'*} and k = max{rel(B): B € §*}, then Ig(F) < max{m, 3}
and rel(F) < 2 - Ih(D) + 1) - max{k, 2}. Now lg(4) < lg(¢,) - 1g(F); thus there is
a linear e s.t. 1g(4) < 25®®) where 25 = 2@,

PROPOSITION. Suppose S has an infinite model then there is a function f s.t. for

simple B,
n ‘f
ke B=HE B.

Proor. Note that if 84 = B and B is simple then 4 is simple. Also, if 4 is simple
and S F A4 then A is valid. The proposition now follows from the lemmas.

IIL. One special case of the theorem is that Theorem 4 of [2] holds for any of the
usual formulations of first-order arithmetic (the corresponding result for the
e-calculus can be found in [1, Theorem 2, p. 107]). More precisely, analysis is an
unbounded speed-up of arithmetic for quantifier-free formulae.
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