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ON THE ITERATED LOGARITHM LAW FOR LOCAL TIME

EDWIN PERKINS

Abstract. If s(t, x) is the local time of a Brownian motion, we show that

9(a) = lim sup,^ inf|;t|<a,,/2(21oglog,)-,/2 s(t, x)(2t log log t)~,/2 satisfies

((1 - a'/2) v o)2 < 9(a) < (2a)-' A I.

In particular, it follows from a result of Resten that

lim sup s(t, x)(2t log log i)_1/2 = 1
r-»oo

for all x a.s.

1. Introduction. Suppose B(t) is Brownian motion on a complete probability

space (ß, $, P) and s(t, x) = (d/dx)i'0 I(B(s) < x) ds (1(A) is the indicator func-

tion of A) is its jointly continuous local time. Since s(t, 0) is identical in law to

suPi<* B(s), the law of the iterated logarithm implies that lim sup,^^ s(t, x)<b(t)~x

= 1 a.s. for each real x, where <j>(t) = (2r|log|log t\ \)x^2. In Kesten [1] it is shown

that

lim sup  sup s(t, x)<j>(t)~x = 1    a.s. (1)
r-»oo      xeR

This implies that lim sup,^^ s(t, x)$(0 ' < 1 for all real x a.s. but leaves open the

question as to whether or not there is equality for all x a.s. That there is equality

for all x a.s. is an easy corollary of the following theorem.

Theorem 1. Let ^(t) = tx/2(2\ log|log t\ \)'x/2. There is a nonincreasing function

9(a) (a > 0) such that

(a) lim sup,^ inf|x|<a^(/) s(t, x)<b(ty] = 9(a) a.s. for all a > 0,

(b) 9(a) < (2a)"1 A 1 for all a > 0,

(c) 9(a) > (1 - a1/2)2 for all a < 1.    □

The method of proof is that in Kesten [1] but some simplification occurs due to

the use of a maximal inequality for submartingales.

2. Main result.

Notation 2. If a > 0, let 7(a) = inf{r > 0\s(t, 0) > a}.

Lemma 3. 7/a > 0, s(T(a), x) is a martingale in x > 0 and satisfies

E(e~Xs^a^) = exp{-Aa(l + 2\|jc|)_i}        (X > 0). (2)

Proof. By Knight [2], s( 7(a), x) is a diffusion in x > 0 with infinitesimal

generator 2yd2/dy2, and in particular is a nonnegative local martingale. Moreover,
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(2) is derived in the proof of Corollary 1.2 in Knight [2]. It follows from (2) that

E(s( 7(a), x)) = a < oo for all x and hence s( T(a), x) is a supermartingale by

Fatou's lemma. Since E(s(T(a), x)) is independent of x, we see that s(T(a), x) must

in fact be a martingale.   □

Proof of Theorem 1. Since lim sup,^^, infw<ai,(t) s(t, x)<b(t)~l is measurable

with respect to the tail a-field of a Brownian motion, a well-known zero-one law

implies that the above expression is a.s. equal to a nonnegative constant 9(a).

Clearly 9(a) < 1 because lim sup,,,^ s(t, 0)(b(t)~x = 1 a.s. Moreover if t > e, then

inf     s(t, x)<b(tyx <  fani)s(t, x)<b(tyx dx(2a*(t)yx
1*1 <«*(') -/-a*(/)

< t(2a^>(t)^(t)yx = (2a)_I-

It remains to show (c). Fix a G [0, 1) and a, G (0, (1 — ax/2)2). Then choose

a2 G (a, V «, 1) such that a, < (a21/2 — al/2)2 or, equivalently, a <

(a2'/2 — a\/2)2. The usual proof of the law of the iterated logarithm allows us to

choose / > 1 such that P(Tk < tk infinitely often) = 1, where Tk = T(a2<b(tk)).

Therefore

p[      inf      s(Tk, x)<p(Tk)~x > a, infinitely often)
V |*| <a*(7i) /

> p[      inf      s(Tk, x) > ax<b(tk) and Tk < tk infinitely often)
\\x\ <<**(»*) /

> p(     sup     s(Tk, 0) - s(Tk, x) > (a2 - ax)<b(tk) only finitely often].   (3)

Use a maximal inequality for submartingales and Lemma 3 to see that if X > 0,

then

p(      sup     s(Tk, 0) - s(Tk, x) > (a2 - ax)<j>(tk))
V |jc| <<**('*) '

'(      sup      s(Tk, 0) - s(Tk, x) > («j - «,)*(/*))
^0<x<a*(tk) '

•\x\ <aV(tk)

< 2PÍ

< 2 exp{-A(a2 - a,)<^(i*)}F.(exp{A(j(7^ 0) - s(Tk, a^(i*)))})

= 2 exp{-A(a2 - ax)<j>(tk) + Xa2<b(tk) - Xa2<b(tk)(l + 2Aa^(/*))-1}

(by (2))

= 2 exp{-A<H/*)(a2(l + 2Aa^(/*))"1 - a,)}. (4)

An elementary calculus argument shows that (4) has a minimum value of

2 exp{- («2/2 - «Vfa-'llogllog tk\ \) (5)

when A = ((a2axx)x/2 - l)(2a^(tk))-1. Since (a\'2 - aj/2)2 > a, (5) is summable

over k and therefore

p(     sup     s(Tk, 0) - s(Tk, x) > (a2 - ax)<j>(tk) only finitely often) = 1
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by the Borel-Cantelli lemma. It follows from (3) that

lim sup        inf      s(Tk, x)<b(Tk)'x > a,    a.s.

for all a, < (1 - a1/2)2, and hence 9(a) > (1 - ax/2)2.   \J

Since 0(oo) = 0, if h(t) satisfies lim,^ h(t)^(t)~l = + oo then

lim sup    inf     s(t, x)<b(t)~  =0   a.s.,
r-oo     \*\<»(t)

and since 9(0+) = 1, if h(t) satisfies lim,^ h(t)\p(t)~x = 0 then

lim sup    inf    s(t, x)<j>(t)~  = 1    a.s.

This latter result (with lim,^^ h(t) = oo), coupled with (1), gives us the following

corollary.

Corollary 4. For to outside a single null set, lim sup,.,^ s(t, x)<b(t)'x — 1 for all

x.   □

Remark 5. A trivial modification of the proof of Theorem 1 shows that for all

a > 0 there is a constant 9 x(a) satisfying (b) and (c) of Theorem 1 and also

lim sup inf s(t, x)(2t log log(rx))~X/2 = 9x(a)    a.s.    \J
'—0+      Ix^aí'/^loglogí-1)^2
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