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ON THE ITERATED LOGARITHM LAW FOR LOCAL TIME
EDWIN PERKINS

ABSTRACT. If s(¢, x) is the local time of a Brownian motion, we show that
8(a) = lim SUpP,_, 00 inf|x|<,,n/z(2 log log 1)-/2 s(t, x)(2¢ log log l)'l/2 satisfies
(- a')\v0) <b(a) < Q) AL
In particular, it follows from a result of Kesten that
lim sup s(¢, x)(2¢ log log t)_'/ 2=

t—o0

for all x a.s.

1. Introduction. Suppose B(?) is Brownian motion on a complete probability
space (R, &, P) and s(t, x) = (d/dx)f{ I(B(s) < x) ds (I(A4) is the indicator func-
tion of A) is its jointly continuous local time. Since s(¢, 0) is identical in law to
sup, ., B(s), the law of the iterated logarithm implies that lim sup,_, ., s(¢, x)o(£)!
= 1 a.s. for each real x, where ¢(f) = (2¢|log|log | |)!/2. In Kesten [1] it is shown
that

limsup sup s(z, x)¢(f)' =1 as. (1)
t—00 xER
This implies that lim sup,_, . s(¢, x)¢(¢)™' < 1 for all real x a.s. but leaves open the
question as to whether or not there is equality for all x a.s. That there is equality
for all x a.s. is an easy corollary of the following theorem.

THEOREM 1. Let ¥(f) = t'/2(2| log|log | |)/2. There is a nonincreasing function
0(a) (a > 0) such that

(@) lim sup, , , infj ¢ auq) S x)¢()! = O(a) a.s. for all « > 0,

() 8(a) < Ra)* Al forall a > 0,

©0(c)> (1 —a/ foralla < 1. [J

The method of proof is that in Kesten [1] but some simplification occurs due to

the use of a maximal inequality for submartingales.

2. Main result.
NoOTATION 2. If @ > 0, let T(a) = inf{z > O|s(¢, 0) > a}.

LEMMA 3. If a > 0, s(T(a), x) is a martingale in x > 0 and satisfies
E(e™T@0) = exp{-Aa(1 + 2Alx)"'} (A > 0). )

ProoF. By Knight [2], s(7(a), x) is a diffusion in x > 0 with infinitesimal
generator 2yd?/dy?, and in particular is a nonnegative local martingale. Moreover,
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(2) is derived in the proof of Corollary 1.2 in Knight [2]. It follows from (2) that
E(s(T(a), x)) = a < « for all x and hence s(7(a), x) is a supermartingale by
Fatou’s lemma. Since E(s(7(a), x)) is independent of x, we see that s(7(a), x) must
in fact be a martingale. [

PROOF OF THEOREM 1. Since lim sup, ,, inf,¢quq St X)$(2)™ is measurable
with respect to the tail o-field of a Brownian motion, a well-known zero-one law
implies that the above expression is a.s. equal to a nonnegative constant 8(a).
Clearly (a) < 1 because lim sup,_,, s(t, 0)¢(f)"! = 1 a.s. Moreover if t > e, then

inf s(s, )o(0)” < [ YO, x)o(r)™ dx(2a¥ (1))
x| <a¥(2) —a¥(1)
< tQa¢()¥(2))"' = Qa)™"

It remains to show (c). Fix a €[0, 1) and a, € (0, (1 — a'/%?). Then choose
a, € (¢; V a, 1) such that a; < (al/?2 — a'’?? or, equivalently, a <
(a)’? — al/%)%. The usual proof of the law of the iterated logarithm allows us to
choose ¢ > 1 such that P(T, < t* infinitely often) = 1, where T, = T(a,d(z¥)).
Therefore

P( Ix] <i£l€(rk) s(T, x)o( Tk)-l > a, infinitely oftcn)

> P( inf  s(Ty, x) > a,¢(2*) and T, < ¢* infinitely often)
|x| <a¥(t%)

> P( sup  s(Tp, 0) — s(T,, x) > (a — a,)(¢*) only finitely often). 3)
|x| <a¥(t%)
Use a maximal inequality for submartingales and Lemma 3 to see that if A > 0,
then

P sup  s(Ti0) = s(Thx) > (= a)ilt¥))
|x| <a¥(t%)

< 2P( sup (T, 0) — s(Tp, x) > (o — al)¢(t"))
0<x <a¥(t)

< 2 exp{-Ma, — a,)(¢%) } E(exp{A(s(T}, 0) — s(T;, a¥(1%)))})
= 2 exp{ A, — a)p(*) + Aayd(t%) — Aop(£*)(1 + Aa¥(£%))™')

(by (2))
= 2 exp{-Ag(t*)(o(1 + Aa¥(24)) " — ay)}. @)

An elementary calculus argument shows that (4) has a minimum value of
2 exp{-— (a3 - a,'/z)za"|log|log t*| |} 5)

when A = ((a0;")"/? — DQRa¥(tY). Since (a)/? — a}’?)? > a, (5) is summable
over k and therefore

P( sup  s(Ty, 0) — s( Tk, x) > (ap — a,)¢(¢*) only finitely often) =1
|x| <a¥(2*)
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by the Borel-Cantelli lemma. It follows from (3) that
lim su; inf  s(T,, )¢(T,)" > a, as.
k_mp < (T (T, x)¢(Ty) 1

forall ¢, < (1 — a'/?? and hence 8(a) > (1 — a'/?2. O
Since 8(0) = 0, if h(?) satisfies lim,_, , A()¥(¢)' = + co then
limsup inf s(1, x)¢(1)' =0 as.,
t—>o0 |1XI<h(2)
and since (0*) = 1, if A(z) satisfies lim,_, , A(£)Y(¢)"" = O then
limsup inf s(t, x)¢(1)' =1 as.
t—o0 lxl <h(’)
This latter result (with lim, . A(f) = o), coupled with (1), gives us the following
corollary.

COROLLARY 4. For w outside a single null set, lim sup,_, . s(t, x)¢(8)™" = 1 for all
x. O

REMARK 5. A trivial modification of the proof of Theorem 1 shows that for all
a > 0 there is a constant 8 '(«) satisfying (b) and (c) of Theorem 1 and also

lim sup inf s(t, x)(2¢ log log(t™))™"/* = §'(a) as. [J
150" x| <ar'/(2 log log t")_'/2
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