
proceedings of the
american mathematical society
Volume 81, Number 3, March 1981

EXTENDING THE CONCEPT OF GENUS TO DIMENSION W

CARLO GAGLIARDI1

Abstract. Some graph-theoretical tools are used to introduce the concept of

"regular genus" §(M„), for every closed n-dimensional PL-manifold M„. Then it is

proved that the regular genus of every surface equals its genus, and that the regular

genus of every 3-manifold Af j equals its Heegaard genus, if M3 is orientable, and

twice its Heegaard genus, if M3 is nonorientable. A geometric approach, and some

applications in dimension four are exhibited.

1. Definitions and notations. Let T = (V, E) be a regular multigraph of degree

n + 1, y: E -> A„ = {/ G Z|0 < i < n] an (n + l)-line-colouring of T [Ha, p. 133].

Such a pair (I\ y) is said to be an (n + l)-coloured graph. For every subset © of

A„, r9 will denote the subgraph (V, y~\9>)); further, for every colour c G A„, c

will denote the set A„ — {c}.

A 2-cell imbedding i: |r| —> F [W, p. 40] of an (n + l)-coloured graph (I\ y) on a

closed surface F is called a regular imbedding if its regions are bounded by

2-coloured cycles. Moreover, i is called a strongly-regular imbedding if there exists a

cyclic permutation e = (e0, . . . , e„) of A„, so that each region is bounded by a

component of one of the subgraphs r{(¡f,+i}, i being an integer modulo n + 1.

It is easy to see that every strongly-regular imbedding is regular. Conversely it is

proved in [G4] that every regular imbedding of a 3- or 4-coloured graph is strongly

regular. This is not true in general, as it is easy to check.

In the present work, we only consider strongly-regular imbeddings, as they seem

to apply better to the geometric situation we wish to represent.

For the sake of conciseness, we shall always omit the word "strongly". So we shall

simply call regular the strongly-regular imbeddings of [G4].

A pseudocomplex [HW, p. 49] K = K(T) of dimension n can be associated to

every (n + l)-coloured graph, so that T becomes its dual 1-skeleton; for the

construction, compare [G2]. If, for every colour c G An, the subgraph T¿ is con-

nected, then A"(r) has exactly n + 1 vertices, and both K and T are said to be

contracted.

Now let M be a closed «-manifold, (I\ y) a contracted (n + l)-coloured graph,

such that the space |7C(r)| of its associated complex is homeomorphic with M; then
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(r, y) is called a crystallisation and K a contracted triangulation of M. A theorem of

Pezzana [P,], [P2] assures that every closed «-manifold admits a contracted triangu-

lation, and therefore it can be represented by a crystallisation. A faster construc-

tion for the case of a 2-fold branched covering of S3 is shown in [F].

By a Heegaard splitting of genus n for a closed 3-manifold M is meant a pair

(&, &') of handlebodies of genus n [He, p. 15], such that & n &' = 9# = 36B', and

& U &■' = M. Their common boundary F= dâ = 9£E' is called the Heegaard

surface of the splitting. Compare also [ST] and [M].

All maps and spaces considered in this work are in the polyhedral category; we

refer to [GI] for the main tools about PL-topology and to [Ha] for the used

graph-theoretical arguments.

2. The regular genus of a closed «-manifold. Let (T, y) be a connected (« + 1)-

coloured graph. It is shown in [G4] that T admits exactly «!/2 regular imbeddings

in some orientable (resp. nonorientable) surface, iff T is a bipartite (resp. nonbipar-

tite) graph. Besides, no regular nonorientable (resp. orientable) imbedding may

exist for a bipartite (resp. nonbipartite) (« 4- l)-coloured graph. So the following

definition is well posed.

Definition 1. By the regular genus p(T) of (T, y) we mean the smallest integer «,

such that T regularly imbeds on the (orientable or nonorientable) closed surface of

genus «.

As bipartite (resp. nonbipartite) graphs admit only orientable (resp. nonorienta-

ble) such imbeddings, then p(T) will be orientable or nonorientable according to T

being a bipartite or a nonbipartite graph.

Now let M be a closed n-manifold, and S = ß(Af ) the class of all the crystallisa-

tions of M. Observe that (5 is nonempty by Pezzana's theorem. Further, any two

crystallisations of 6 are joined by a finite sequence of moves, described in [FG].

Definition 2. With the prior notations, set

§(M) = min{p(r)|(r, y) G 6(M)}.

We shall call §(M) the regular genus of the n-manifold M.2

3. The main results.

Theorem. (A) Let M2 be a closed surface, and ö(A72) its genus. Then § (M^ =

q(M2).

(B) Let M3 be a closed 3-manifold, and %(M3) its Heegaard genus.3 Then

(i) §(M3) = %(M3) if M3 is orientable;

(ii) §(M3) = 2%(M3) if M3 is nonorientable.

2A similar concept can be defined for every space representable by (n + l)-coloured graphs.

3The Heegaard genus of a 3-manifold M3 is defined as the smallest integer h, such that M3 admits a

Heegaard splitting of genus h. Observe that the Heegaard surface of the splitting has genus h, if

orientable, or 2h, if nonorientable.
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Proof of Theorem A. Every 3-coloured graph (in particular every surface-crys-

tallisation) represents a closed surface M2 if and only if it regularly imbeds in M2

[G4, Corollary 4]. Moreover, this imbedding is unique, up to equivalences [G4,

Proposition 3]. Thus §(M2) = q(M2), for every closed surface M2.   fj

The proof of Theorem (B) needs some notations and two lemmas.

Let M3 be a closed 3-manifold and (&, &■') a Heegaard splitting of genus « for

M3. By a Heegaard diagram arising from (â, &') is meant a triple (F, x =

(xx, . . ., xn), y = (yx, . . . ,y„)), where F = 8í£ = 36B' is the Heegaard surface of

the splitting, and x, y are two disjoint systems of curves on F, satisfying the

following properties.

(a) each curve x, (resp. v,) bounds a 2-ball X, of & (resp. Y, of &').

(b) & (resp. &'), cut open along the 2-balls X, (resp. Y,), / = 1, ...,«, is a 3-ball.

Now let (r, y) be a crystallisation of M3. As shown in [G4, Proposition 11], for

every pair of colours a, ß G A3, T admits a regular imbedding i^: |r| —* Fap, where

Faß is a Heegaard surface of M3, determining the splitting (<£aß, &aß)- Also ^et

£0, . . . , £„ be the components of T{aB), &, . . ., £ the ones of T{a,B,}, a', ß' being

the remaining two colours.

Set x,. = ia/3(£,) and v, = ia0(%), for / G A„; finally let

x0) = {*o> • ■ • » xj> ■ ■ • > xn}>   y(¿) - {v0, ...,yk,... ,y„}.

Lemma 3. For every j, k G A„, the triple (Faß, x(j), y(k)) is a Heegaard diagram of

M3, arising from the splitting (<S,aß, &aß)-

Proof. It is shown in [P2], and subsequently in [G4] that (&aß, &áa) has genus «,

« + 1 being the number of components of r.^,. Further, each curve x, (resp. y¡)

bounds a 2-ball X, of &aß (resp. Y, of &^ß), and &aß (resp. &^ß), cut open along all

the 2-balls X, (resp. Y,), splits into the disjoint union of two 3-balls. It follows that

&aß (resp. &aß), cut open along all the X, (resp. Y,), but one, arbitrarily chosen, is a

3-ball. The proof is therefore complete.   □

Lemma 4. Let (&, &') be a Heegaard splitting of M3, F = dâ = 96E' its Heegaard

surface. Then there exists a crystallisation (I\ y) of M3 which regularly imbeds in F.

Proof. Let (F, x = (x,, . . . , x„), y = (yx, . . . ,yn)) be a Heegaard diagram,

arising from (6B, &.'), n being the genus of the splitting. It becomes useful, in the

construction of (I\ y), to take the usual representation of the diagram in the

ordinary euclidean space (see [S]).

For, let S2 be the 2-sphere, represented as the (x, v)-plane, plus a point at

infinity. For every integer r, let Pr = (r, -I), P'r = (r, 1), %r, %/ the balls of radius

1/4 and centers at Pr and P'r respectively, %r, %'r their interiors, sr, %'r their

boundaries. By A2n is meant the surface S2 — U "_(9Cr — U "-x%'r. Now let

/: A2„ —> F be a map, one-to-one everywhere, except that each point of xr,

r G A„ - {0}, has two points, one of %r and one of %'r, as inverse image.
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Also let A+ (resp. A_) be the subset of A2„ consisting of all the points with

nonnegative (resp. nonpositive) Ordinate, plus the point at infinity.

By isotoping, if necessary, the y-curves, we can suppose that the following three

conditions hold.

(a) For every /' G A„ — {0}, f'x(y,) is the disjoint union of a finite set of arcs

{a/}, each meeting a circle only at its endpoints.

(b) Let a/¡ be anyone of the previous arcs, and £0 the x-axis plus the point at

infinity; then aj n A+ (resp. aj n A_), if nonempty, is the disjoint union of a

finite set of arcs {£>,/,} (resp. {cjk}), none of which meets r.n at an inner point.

Each circle $r (resp. i'r), r G A„ — (0), is split by the endpoints of the arcs a, into

the union of a finite set of arcs {b„} (resp. {b'rs}). Let &' be the union of the

families of arcs {aj}, {t>rs}, {b^}, aiu* "V the set of their endpoints.

By condition (a), we can consider the pseudograph I" = (V, E') (multiple edges

and loops may occur), where the vertex-set V is in bijection with T', and two

vertices v, w are joined by an edge of E' iff the corresponding elements of T' are

the endpoints of the same arc of & '.

With a slight abuse of notation, we can suppose I" imbedded in A^, by

identifying (V, E') with (T', &'). With the prior convention, we can state the third

condition:

(c) None of the connected components of I" lies entirely in A+ or A_.

Let {b0m} be the arcs into which the circle £0 is subdivided by the endpoints of

the arcs {b¿,} and {(4). By conditions (b), (c), we can consider a new pseudograph

T" = (Y", &"), where &" is the union of the families of arcs {ír¿,}, {^}, {b„},

{b'rs}, and T" the set of their endpoints.

Set Y = f(cY'J,ß =f(S"). Again a pseudograph F = (V, F), with (V, Ë)

identified with (°V, &), can be considered.

Observe that the result of the previous construction is the adding of a new cycle

x0 = /(ï0) to the family x, and the rearrangement of the y-curves, in order to get T,

imbedded in F, and whose inverse image under/satisfies properties (a)-(c).

Now let Qr = (-1, r), Q'r = (1, r), %, %, #„ %, t>r, o'r, A2n,f: A2„ ̂  F, A'+,

A'_ defined as below, simply by exhanging the x-axis with the v-axis. A perfectly

analogous construction can be done, starting from T, changing the rôle of the sets x

and y. The result is a multigraph V" = ("{'", & '"), imbedded in A2n, and a

multigraph T = (V, E), regular of degree four, with (V, E) identified with (/'(CV*'")>

f'(&'")).
Observe that T can be obtained from T simply by adding a suitable cycle v0 to

the family of cycles, whose images onto F are the y-curves.

In order to define the colouring y: F—»A3, it suffices to consider the two

representations of T on A2„ and A2n, by means of the maps /', / respectively. The

first is V" = CV'", & '") while the second, T"" say, is obtained from T" by adding

the inverse image under/of the cycle v0.

Now, label by "0" (resp. by "2") all the edges of T'", lying in A'+ (resp. A'_) but

not belonging to the cycles %, ï)r, ï)'r, r G A„ - {0}. Analogously, label by "1"
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(resp. by "3") all the edges of T"", lying in A+ (resp. A_), but not belonging to the

cycles £0, £,., i'¡, i G A„ - {0}.

The pair (I\ y), where y is the induced colouring on the edges of T, is a

4-coloured graph, whose realisation on F provides a regular inbedding i: |r| -» F.4

Moreover, condition (c) proves that (I\ y) is a contracted graph.

By the construction itself, (T, y) turns out to be a 3-manifold crystallisation, as

each of the four subgraphs T-, c G A3, can be regularly imbedded in A+, A_, A'+,

A'_, and therefore p(T¿) = 0, for every c G A3 (compare [P3, Proposition 10] or [G4,

Corollary 16-e']).

We have only to show that (I\ y) is a crystallisation of M3. For, let (¿q, . . . , £„}

(resp. {£„, • • • , è'„}) be the set of connected components of the subgraph r,02,

(resp. r{, 3}), whose image on F is x = x u {x0} (resp. y = y U {y0})-

Thus, (F, x(0), y(0)) is (equivalent to) the original Heegaard diagram (F, x, y) of

M3. The proof of Lemma 4 is thereby complete.    □

Figures 1(a), 1(b) and 1(c) illustrate the construction of Lemma 4 applied to the

classical Heegaard diagram of the Poincaré space (compare [Po]), which is also

reproduced in [R, p. 245].

Figure 1(a)

Proof of Theorem B. This is an easy consequence of the previous two lemmas.

□

Remark. Lemmas 3 and 4 give an algorithm to get a crystallisation from a

Heegaard diagram of a closed 3-manifold, and conversely.

'In the terminology of [G4], 1 is induced by the fundamental cyclic permutation of A-
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(r,y)
Figure 1(c)

4. A geometric approach. Let Mn be a closed PL «-manifold, K a contracted

triangulation of Mn, v0, . . ., v„ the « + 1 vertices of K, Sd K its first barycentric

subdivision. If A" is an «-simplex of K, i,j two different elements of A„, let us call

A"~2(i,j) the (« - 2)-face of A " not containing the two vertices t>, and u,.

Now, for every cyclic permutation e = (e0, . . . , e„) of An, define 77e to be the

subcomplex of Sd K, obtained as follows:
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(a) for every «-simplex A", and for every i G Zn+,,5 consider the barycenter

a(ê„ ê/+1) of A"~2(êi,èi+X); then call a(e¡) the barycenter of the (« - l)-face

opposite to the vertex t;^ ;

(b) consider the 1-sphere 2, consisting of all the 1-simplexes of SdA", joining

a(e¡) with either a(e¡, êi+x) or a(e¡_x, ê,), /" being an integer modulo « + 1;

(c) set 3D = a * 2, a being the barycenter of A ", and define 77e to be the union

of all the 2-balls ^ 's so obtained.

It is easy to see that the space Fe = |77e| is a closed surface, PL-imbedded in Mn.

We shall call each Fc a regular surface of Mn associated to K and e.

Observe that, for « = 3, each regular surface is actually a Heegaard surface, and

conversely.

Now set @(Mn) — min{g(F)|Fis a regular surface of M„) where q(F) denotes, as

before, the genus of the surface F.

Proposition 5. With the previous notations, we have @(M„) = §(Mn).

Proof. Suppose F = Fe(7<T), a regular surface of Mn associated to the contracted

complex K and the cyclic permutation e. An easy calculation shows that the Euler

characteristic of F is

X(F)=    2    i"_J(v^i) + 0 - »)«"/2
/ez„+1

where q" is the number of «-simplexes of K, and q"~2(r, s) denote the number of

(« — 2)-simplexes of K which do not contain vertices vr and vs.

The desired result follows immediately from the definition of regular genus of

Mn, and the formula of [G4, Propositions 19, 23].   □

Remark. A direct geometric proof of Proposition 5 can be accomplished by

showing that (i) any crystallisation (r, y) of Mn regularly imbeds into all the regular

surfaces associated to K(T), (ii) if (I\ y) regularly imbeds in a surface F, then F can

be imbedded in Mn, so that it becomes a regular surface of it.

Such a construction, for dimension 3, is exposed in [G4, Proposition 12].

5. Applications to dimension four. Let Mn be a closed orientable (resp. nonorien-

table) «-dimensional manifold; for any contracted triangulation K of Mn, we shall

describe a family of "handlebody decompositions" for Mn. For every pair of

vertices v¡, u, of K, i, j G A„, consider the contracted subcomplexes Ky and K¡j,

generated by the vertex-sets {v¡, u,} and {vk\k G A„ — {i,j}} respectively.

Also let 77^ be the largest subcomplex of Sd K, disjoint from Sd Ky u Sd K¡¡. Hy

is a closed orientable (resp. nonorientable, if « > 2) (n — l)-manifold, which splits

Sd K into two complementary subcomplexes, Ly and L¡¡ say, having 77^ as common

boundary; moreover, they are regular neighbourhoods of Sd Ky and Sd K-j respec-

tively, and \Ly\ is an «-dimensonal handlebody (i.e. an «-ball with 1-handles

attached upon).

iZh denotes the cyclic group of order h.
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Suppose now « = 2k + 1 (resp. « = 2k), and consider any partition {a,,, a,},

{a2, a3}, . . ., {a^, a^+J (resp. {a0, a,}, {a2, a3}, . . . , {a2k}) of A„; then call ê,

the space |72a_2ai + ,| for i G Ak_x, and &k the space |72(%2<% + ,| or |LjJ, according

with n being an odd or an even number.

The (k + l)-tuple ((£(,, &x,. . . , (Zk) of handlebodies satisfies the following prop-

erties.

(a)UreAt£r = A/„,

(b) for every y G Ak, fi, n ( U ,w #,) = 3éE>f

(c) if « = 2k, then (3^ is an «-ball.

It is easy to see that the (k + l)-tuple mentioned previously reduces to a Heegaard

splitting for dimension three. For this reason, (éEn, . . . , &k) will be called a

generalized Heegaard decomposition of Mn. More details are available in [G,].

The following proposition binds the concepts of "regular surface" and of

"generalized Heegaard decomposition", in dimension four.

Proposition 6. Suppose M4 a closed 4-dimensional manifold. Then, for every

regular surface F of M4, there exists a generalized Heegaard decomposition

((Sq, &x, ($2) of M4, such that F is a Heegaard surface of &q.

Corollary 7. Let M4 be a closed orientable (resp. nonorientable) 4-maniSold, and

let @(M4) m h, with h > 0 (resp. §(M4) = 2«, with h > 0). Then irx(M4) is a

quotient of the free group on « generators. In particular,

(a) // § (M4) = 0, then M4 is simply connected,

(b) // § (M4) = 1 and M4 is orientable (resp. § (M4) = 2 and M4 is nonorientable),

then ttx(M4) is a cyclic group.

Proof. Let (I\ y) be a crystallisation of M4, e a cyclic permutation of A4, and F

the regular surface of M4, associated with K(T) and e. It follows from Proposition 5

that there exists a regular imbedding i: |r| —► F. As shown in [G4], i is induced by a

cyclic permutation of A4, which is exactly e, as it is not hard to check. We can

suppose, w.l.o.g., e induced by the fundamental permutation (0, 1, 2, 3, 4).

Now, let us consider the generalized Heegaard decomposition (6?q, 6E,, (3^) of M4,

relative to the partition {0, 2), {1, 3}, {4} of A4; also call Q the 3-dimensional

ball-complex, whose 3-balls are the intersections of 96?n with each 4-simplex of K,

and Q' the 2-dimensional ball-complex, whose 2-balls are the (penthagonal) regions

of the dual graph of the imbedding i in F. |Q| and |Q'| are obviously homeomor-

phic to 96Erj and F respectively.

Now, each 2-ball of Q' is imbedded in a 3-ball of Q, as indicated in Figure 7 of

[G4]; the induced imbedding, F^dS^, makes F a Heegaard surface of 96îrj. This

completes the proof of Proposition 6.

To prove Corollary 7, we first remark that éün is a 4-dimensional handlebody of

genus X (i.e. a 4-ball with X 1-handles attached upon), where X + 1 is the number of

1-simplexes of K02, or equivalently, the number of connected components of the

subgraph   r{134).   Its   boundary   9^   is   thereby   PL-homeomorphic   either   to
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X # §' X S2, if orientable, or to X # S1 X S2, if nonorientable.6 By the prior

proposition, if q(F) = § (M4), then À < « in both the orientable and the nonorien-

table cases. Now, the main result of [G3] states that ttx(M4) admits a presentation

with X generators, and the proof is therefore complete,   fj

As an easy consequence of the previous construction, we can state the following.

Corollary 8. If M4 is a closed nonorientable 4-manifold, then % (M4) is an even

positive number.   □

We conjecture that Proposition 6 and Corollaries 7 and 8 can be generalized to

all dimensions.
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