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INDUCTIVE DIMENSION AND INVERSE SEQUENCES

OF COMPACT SPACES

M. G. CHARALAMBOUS

Abstract. We construct an inverse sequence of compact Hausdorff spaces each of

which has inductive dimension one while the limit space of the sequence has large

inductive dimension two.

1. Introduction. The inverse limit theorem for covering dimension, dim, states

that if X is the limit space of an inverse system {Xa,faß} where each Xa is compact

with dim Xa < n, then dim X < n. The inverse limit theorem for dim also holds for

inverse sequences of perfectly normal spaces [1], but it fails for inverse sequences of

Lindelöf spaces [2]. In this paper, we investigate the inverse limit theorem for large

inductive dimension, Ind. It is easy to see that this theorem fails for arbitrary

inverse systems of compact spaces on account of the fact that every compact space

X with dim X < « is the limit space of an inverse system of compact metric spaces

Xa with dim Xa < n: it suffices to consider a compact space X with dim A' <

Ind X. Our aim is to show that the inverse limit theorem fails even for inverse

sequences of compact spaces. We construct an inverse sequence {X„, ir^,} of

compact spaces Xn with Ind Xn = 1 whose limit space X satisfies Ind X = 2. Our

construction was suggested by a construction of Fedorcuk in [4].

All results and terminology pertaining to inverse limits and dimension that are

referred to in this paper can be found in both [3] and [5].

2. The construction. Let 7 denote the closed interval [0, I], J the open interval

(0, 1) and N the set of positive integers. Let Ax, A2,. . . be a partition of J into

disjoint dense sets. Let [Fa: a < c} be the collection of all perfect and, therefore,

uncountable sets of 7, where c is the cardinality of the continuum, and for each

a < c choose a double-sided point xa in Fa so that xa ¥= Xß for a ¥= ß. For each x

in J choose an increasing sequence {x~} and a decreasing sequence {x„+}, both

converging to x and such that, if x = xa for some a < c, then x~ and x„+ are in Fa

for each « in TV.

For each x in J, we define a continuous function/ = fx: I — {x} —» 7 as follows.

We set /(0) = 0, fil) = 1 and fix;) = f(x„+) = qn, where Q = {a„: « G N) is a

dense set of J. To the intervals [0, xf], [x¡", x2], . . ., [x,+, 1], [x2 , x,+], . . . , /is

extended in the obvious homeomorphic fashion. It can readily be seen that for

every y in J, f~x(y) consists of an increasing together with a decreasing sequence,

both converging to x, and if A is a countable dense subset of J, then so is f~x(A).
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Now, if {Bx, B2, . . . }  and  {C„ C2, . . . }  are collections of mutually disjoint

countable dense sets of J, there is a homeomorphism g: J —»/ with g(Bx) = C„

g(B2) = C2, . . . . It follows that we may assume that there are countable dense sets

Qm ofJ,m G N, such that/_1(ßm) is a dense subset of Am.

For « = 1, 2, . . . , oo, we let

n

y„ = LM, x / * {/} u 7 x {o} x {/},
i=i

X„ is the set obtained from Y„ by identifying two points (x„ v„ /), (x2, y2,y) if and

only if x, = x2 and v, = y2 = 0. Thus the point (x, 0, /) of X„ may be more simply

written as x. The projection tt^,: Xm^>Xn, m > n, is defined by Tnm(x, v, 0 =

(x,.y, /) for / < « and wnm(x, y, i) = x for i > n. A function it = mn: Xm-*J is

defined by tt(x, y, i) = x. Finally, we define the topology of Xn by defining the

local base of open neighbourhoods at each point of X„. At a point x with

x §É U "_, A¡, we take as base the collection of all sets of the form ir~x(U), where U

is an open neighbourhood of x in I. At a point (x, y, i) where x G A¡ and / < «, we

take as base the collection of all sets of the form

o(x, u, v) = {x} x v x {/} u *-\U n f;\v))

where U, V are open neighbourhoods of x, v, respectively, in I.

It is readily seen that it: Xn -* I and irnm: Xm -» A'n, n = 1, 2, . . . , oo, are

continuous and {X„, •nnm, n, m G N) is an inverse sequence with limit space

X-Xm.
Claim 1. For « = 1, 2, . . ., oo, Xn is compact and Hausdorff.

Proof. That X„ is Hausdorff is straightforward. To see that Xn is compact,

suppose {0(x, Ua, Va): a G A} is an open cover of (x) X 7 X {/'}, x G A¡ and

i < «, which is homeomorphic with 7. Then for some ax, . .., ak in A, I = Va

U • • • U^. Letting t/ = Ua¡ n • • • n t/^, we see that 0(x, U, V^)

U • • • U 0(x, U, Va ) = tt~x(U) contains {x} X 7 X {/}. Thus for every x in 7

and every open cover { Ga} of tt~x(x), there is an open neighbourhood U of x in I

such that ir~x( U) is covered by a finite number of Ga's. This readily implies that Xn

is compact.

Claim 2. For each « in TV, Ind Xn = I.

Proof. Since tt'x(x) is homeomorphic with 7 for each x in An, then Ind X„ > 1.

It suffices, therefore, to show that Ind Xn < 1. For a point (x, 0, /) of X„ with

x & U "_, -4„ we can choose inside any given neighbourhood, a neighbourhood of

the form it'x(U) where U = (a, b) or [0, b) or (a, 1] for some a, b in An+X. Clearly

B(ir'x(U)), where B denotes boundary consists, of one or both of a, b. For a point

(x,y,i) with x in A¡ and i < n, inside any neighbourhood we can choose a

neighbourhood 0(x, U, V) with V = (a, ¿>) or [0, a) or (¿>, 1] where a, b are points

of ßn+i aQd 1/ is an open interval with end points chosen from the countable

subset fcx{a, b) of An+X. It can be verified that B(0(x, U, V)) is a subset of

{x} X {a, b) X {/'} u f*l{a, b}. We conclude that ind Xn < 1 and hence Ind X„

< 1.

Claim 3. Ind X = 2.
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Proof. As in the proof of Claim 2, every point of X has a base of open sets

whose boundary consists of a countable number of copies of 7 together with at

most two points. Hence Ind X < 2 and it remains to show Ind X > 2. Let G, H be

disjoint nonempty open subsets of X such that X = G u 77 u F, where F = G n

H. It suffices to show that F contains a copy of 7. Suppose first that ir(F) is a

perfect subset of 7. Then for some a < c, tt(F) = Fa, and it can be readily verified

that 0(x, U, V), where x = xa, U is an open neighbourhood of x in 7 and V is any

nonempty open subset of 7, contains infinitely many of w_1(x~) and w_l(xn+),

n G N. Since x~, x„+ were chosen to be points of tt(F), 0(x, U, V) contains

infinitely many points of F. It follows that ir~x(x), a copy of 7, is contained in F.

Finally, suppose w(F) is not perfect, i.e., tt(F) contains an isolated point, say, x.

Since tt'x(y) is connected for each y in 7, it follows that 7 = tt*(G) u "tt*(H) u

tt(F), where for a subset ,4 of A', ir*(A) = { v G 7: ir_I( v) C A). Let U = (a, b) be

an open neighbourhood of x such that U n tt(F) = {x}. We must have £/ n

w*(G) ¥= 0 and £/ n 7r*(77) ̂  0; otherwise w_1(t/) n G or w_I(C/) n 77 are sub-

sets of tt~x(x). Hence, without loss of generality, (a, x) G ir*(G) and (x, b) G

tt*(H). For any given nonempty open set V of 7, choose « in A^ so that

fix;) =/(x„+) is in V and a < x" < x„+ < b. Then 0(x, U, V) contains both

tt~x(x;), a subset of G, and 7r_1(xn+), a subset of H. It follows that every point of

tr~l(x) is a limit point of both G and 77 and hence ir~x(x) G F. This concludes the

proof since tt~x(x) is homeomorphic with 7.

We note in conclusion that for « = 1, 2, . . . , oo, Xn is both separable and first

countable. Also, since Ind Xn = 1, for each « in N, dim X„ = 1 and, by the inverse

limit theorem for dim, dim X = I.
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