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A COUNTEREXAMPLE FOR COMMUTATION IN TENSOR

PRODUCTS OF C*-ALGEBRAS

R. J. ARCHBOLD

Abstract. An example is given to show the failure of the analogue for C*-algebras

of the commutation theorem for von Neumann tensor products.

Let A, B, C, D be C*-algebras with A Q C and BCD. Tomiyama [10, p. 29]

has raised the question as to whether (A ® B)c = Ac ® Bc. In this context <8>

denotes the spatial tensor product and (A <8> B)c (respectively Ac, Bc) is the relative

commutant of A ® B (respectively A, B) in C ® D (respectively C, D). It is easy

to see that the inclusion Ac ® Bc ç (A ® B)c is always valid. In the special case

where C has an identity I, A = Cl and B = D, the question has an affirmative

answer [7, Theorem 1], and the result has been generalized to the case of an

arbitrary C*-tensor norm [1], [4]. It is therefore tempting to conjecture that the

question has an affirmative answer at least in the case where A = Cl (but B is an

arbitrary C*-subalgebra of D). In this note we present a counterexample based on

results of Choi [5], Wassermann [13] and Voiculescu [11].

We begin by recalling some facts about slice maps [9]. Let A and B be

C*-algebras and let <i> G A*. The right slice map R^. A ® B -> B is the unique

bounded linear mapping with the property that R$(a ® b) = <p(a)b (a G A, b G

B). A triple (A, B, J), where J is a closed two-sided ideal of B, is said to verify the

slice map conjecture [12] if whenever x G A <8> B and R^,(x) G J for all <¡> E A*

then x G A <8> J. It is well known that (A, B, J) verifies the slice map conjecture if

and only if A ® / is the kernel of the canonical »-homomorphism ¡i: A <S> B —* A

® (B/J). This is because

ker ju. = [x G A ® B\R^(x) G J for all </> G A*}.

The following result is implicit in [13, 2.5]. Although we shall apply it in a rather

special case, we state it in the given form since it may be of independent interest.

Proposition. Suppose that B/J is a nuclear C*-algebra. Then the triple (A, B, J)

verifies the slice map conjecture.

Proof. Suppose that (A, B, J) does not verify the slice map conjecture.

The canonical *-isomorphism of the algebraic tensor product AO(B/J) into

(A ® B)/(A ® J) induces on A 0(2?//) a C*-norm which is distinct from the least

C*-norm since ker n ¥= A <8> J. This contradicts the nuclearity of B/J.
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Remark. Since any quotient of a nuclear C*-algebra is nuclear [6], it follows

from the Proposition that (A, B, J) verifies the slice map conjecture whenever B is

a nuclear C*-algebra. It is shown in [2] that in fact it suffices to assume that B is

just a C*-subalgebra of some nuclear C*-algebra in order to conclude that

(A, B, J) verifies the slice map conjecture.

We now give the counterexample. Let C = C^iy, the full C*-algebra of the

free group on two generators, and let J be the kernel of the canonical »-homomor-

phism from C onto the C*-algebra of the left regular representation of F2. Since C

is separable it follows from [8, 3.7.5] that there is a faithful (nondegenerate)

representation m of C on a separable Hubert space H (of infinite dimension). By [5,

Corollary 2] m(C) contains no nonzero compact operator. It follows that we may

regard C as a C*-subalgebra of the Calkin algebra (D say) associated with H. Since

m was nondegenerate we may assume that the identity 1 of D lies in C. Let A = Cl

and let B = (J + Cl)c (the relative commutant of J + Cl in D). Then, with the

relative commutants taken as indicated in the opening paragraph, we have the

following result.

Theorem. (A ® B)c ¥= Ac <g> Bc.

Proof. Since / + Cl is a separable C*-subalgebra of D it follows from [11] (see

also [3, p. 345]) that (J + Cl)ec = J + Cl. Thus Bc = J + Cl and so Ac <8> Bc =

C ®(J + Cl). By [13, 2.7, Remark] there exists x<=C®C(CC®D) such that

x G C <S> J and R^(x) G / for all <i> G C* (where R^ is the right slice map

C <8> C -> C associated with <¡>). Applying the Proposition to the triple (C, J +

Cl, /) we see that x 6Ê C ® (/ + Cl).

Let b G B. For <j> G C* we have

R¿x(l ® b) - (1 ® b)x] = R¿x)b - bR+(x) = 0.

Hence x(l ® b) - (1 ® b)x = 0 [9, Theorem 1], and so x G (A ® ¿?)c.

The author is grateful to M.-D. Choi for providing a copy of [5] prior to

publication.
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