A COUNTEREXAMPLE FOR COMMUTATION IN TENSOR PRODUCTS OF C*-ALGEBRAS

R. J. ARCHBOLD

ABSTRACT. An example is given to show the failure of the analogue for C^* -algebras of the commutation theorem for von Neumann tensor products.

Let A, B, C, D be C^* -algebras with $A \subseteq C$ and $B \subseteq D$. Tomiyama [10, p. 29] has raised the question as to whether $(A \otimes B)^c = A^c \otimes B^c$. In this context \otimes denotes the spatial tensor product and $(A \otimes B)^c$ (respectively A^c, B^c) is the relative commutant of $A \otimes B$ (respectively A, B) in $C \otimes D$ (respectively C, D). It is easy to see that the inclusion $A^c \otimes B^c \subseteq (A \otimes B)^c$ is always valid. In the special case where C has an identity 1, A = C1 and B = D, the question has an affirmative answer [7, Theorem 1], and the result has been generalized to the case of an arbitrary C^* -tensor norm [1], [4]. It is therefore tempting to conjecture that the question has an affirmative answer at least in the case where A = C1 (but B is an arbitrary C^* -subalgebra of D). In this note we present a counterexample based on results of Choi [5], Wassermann [13] and Voiculescu [11].

We begin by recalling some facts about slice maps [9]. Let A and B be C^* -algebras and let $\phi \in A^*$. The right slice map $R_{\phi} \colon A \otimes B \to B$ is the unique bounded linear mapping with the property that $R_{\phi}(a \otimes b) = \phi(a)b$ ($a \in A$, $b \in B$). A triple (A, B, J), where J is a closed two-sided ideal of B, is said to verify the slice map conjecture [12] if whenever $x \in A \otimes B$ and $R_{\phi}(x) \in J$ for all $\phi \in A^*$ then $x \in A \otimes J$. It is well known that (A, B, J) verifies the slice map conjecture if and only if $A \otimes J$ is the kernel of the canonical *-homomorphism $\mu \colon A \otimes B \to A \otimes (B/J)$. This is because

$$\ker \mu = \{ x \in A \otimes B | R_{\phi}(x) \in J \text{ for all } \phi \in A^* \}.$$

The following result is implicit in [13, 2.5]. Although we shall apply it in a rather special case, we state it in the given form since it may be of independent interest.

PROPOSITION. Suppose that B/J is a nuclear C^* -algebra. Then the triple (A, B, J) verifies the slice map conjecture.

PROOF. Suppose that (A, B, J) does not verify the slice map conjecture. The canonical *-isomorphism of the algebraic tensor product $A \odot (B/J)$ into $(A \otimes B)/(A \otimes J)$ induces on $A \odot (B/J)$ a C^* -norm which is distinct from the least C^* -norm since ker $\mu \neq A \otimes J$. This contradicts the nuclearity of B/J.

Received by the editors April 4, 1980.

AMS (MOS) subject classifications (1970). Primary 46L05.

Key words and phrases. C*-algebra, tensor product, relative commutant, slice map, free group.

REMARK. Since any quotient of a nuclear C^* -algebra is nuclear [6], it follows from the Proposition that (A, B, J) verifies the slice map conjecture whenever B is a nuclear C^* -algebra. It is shown in [2] that in fact it suffices to assume that B is just a C^* -subalgebra of some nuclear C^* -algebra in order to conclude that (A, B, J) verifies the slice map conjecture.

We now give the counterexample. Let $C = C^*(F_2)$, the full C^* -algebra of the free group on two generators, and let J be the kernel of the canonical *-homomorphism from C onto the C^* -algebra of the left regular representation of F_2 . Since C is separable it follows from [8, 3.7.5] that there is a faithful (nondegenerate) representation π of C on a separable Hilbert space H (of infinite dimension). By [5, Corollary 2] $\pi(C)$ contains no nonzero compact operator. It follows that we may regard C as a C^* -subalgebra of the Calkin algebra (D say) associated with H. Since π was nondegenerate we may assume that the identity 1 of D lies in C. Let A = C1 and let $B = (J + C1)^c$ (the relative commutant of J + C1 in D). Then, with the relative commutants taken as indicated in the opening paragraph, we have the following result.

THEOREM. $(A \otimes B)^c \neq A^c \otimes B^c$.

PROOF. Since J+Cl is a separable C^* -subalgebra of D it follows from [11] (see also [3, p. 345]) that $(J+Cl)^{cc}=J+Cl$. Thus $B^c=J+Cl$ and so $A^c\otimes B^c=C\otimes (J+Cl)$. By [13, 2.7, Remark] there exists $x\in C\otimes C$ ($\subseteq C\otimes D$) such that $x\notin C\otimes J$ and $R_{\phi}(x)\in J$ for all $\phi\in C^*$ (where R_{ϕ} is the right slice map $C\otimes C\to C$ associated with ϕ). Applying the Proposition to the triple (C,J+Cl), we see that $x\notin C\otimes (J+Cl)$.

Let $b \in B$. For $\phi \in C^*$ we have

$$R_{\phi}[x(1 \otimes b) - (1 \otimes b)x] = R_{\phi}(x)b - bR_{\phi}(x) = 0.$$

Hence $x(1 \otimes b) - (1 \otimes b)x = 0$ [9, Theorem 1], and so $x \in (A \otimes B)^c$.

The author is grateful to M.-D. Choi for providing a copy of [5] prior to publication.

REFERENCES

- 1. R. J. Archbold, On the centre of a tensor product of C*-algebras, J. London Math. Soc. (2) 10 (1975), 257-262.
- 2. R. J. Archbold and C. J. K. Batty, C*-tensor norms and slice maps, J. London Math. Soc. (2) 22 (1980), 127-138.
 - 3. W. B. Arveson, Notes on extensions of C*-algebras, Duke Math. J. 44 (1977), 329-355.
- 4. C. J. K. Batty, On relative commutants in tensor products of C*-algebras, Math. Z. 151 (1976), 215-218.
 - 5. M-D. Choi, The full C*-algebra of the free group on two generators, Pacific J. Math. (to appear).
- 6. M-D. Choi and E. G. Effros, Nuclear C*-algebras and injectivity: the general case, Indiana Univ. Math. J. 26 (1977), 443-446.
- 7. R. Haydon and S. Wassermann, A commutation result for tensor products of C*-algebras, Bull. London Math. Soc. 5 (1973), 283-287.
 - 8. G. K. Pedersen, C*-algebras and their automorphism groups, Academic Press, London, 1979.

- 9. J. Tomiyama, Applications of Fubini type theorem to the tensor products of C*-algebras, Tôhoku Math. J. (2) 19 (1967), 213-226.
- 10. _____, Tensor products and approximation problems of C*-algebras, Publ. Res. Inst. Math. Sci. 11 (1975), 163-183.
- 11. D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), 97-113.
- 12. S. Wassermann, The slice map problem for C*-algebras, Proc. London Math. Soc. (3) 32 (1976), 537-559.
 - 13. _____, On tensor products of certain group C*-algebras, J. Funct. Anal. 23 (1976), 239-254.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ABERDEEN, ABERDEEN AB9 2TY, SCOTLAND