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LEV! FLAT HYPERSURFACES

WHICH ARE NOT HOLOMORPHICALLY FLAT

ERIC BEDFORD AND PAOLO DE BARTOLOMEIS

Abstract. A real analytic, Levi flat hypersurface S c C is locally biholomorphi-

cally flat. It is shown here that if 5 is Levi flat and C°°, then in general it is not

possible to flatten S, even in a local, "one-sided" sense.

If S c C"+1 is a smooth hypersurface whose Levi form vanishes identically then

S is a 1-parameter family of complex manifolds of dimension «.If S1 is real

analytic, then locally one may choose holomorphic coordinates z* such that

S = {Re z*+, = 0}. Let us fix p G S and fix one side of S a\p; we let D + denote

a small one-sided neighborhood of S at p, which, after shrinking, will be again

denoted by D +.

We consider the possibility of a local one-sided flattening of S in the following

sense.

There   exists   a   holomorphic   map   F:   Z)+-»{¿EC+1:

Re z„ + x > 0} such that if {£} c D + and lim,^ dist(¿}, S) (1)

= 0 then lim,^ dist(F(i;.), (Re zn+x = 0}) = 0.

It is easily seen that S cannot be flattened in the sense of (1) if the Levi form of S

does not vanish identically (cf. condition (c) of the lemma). Related results have

been obtained by Henkin [4] and Pincuk [5]. The point of this paper is that Levi

flatness is not sufficient for the surface S to be flattened.

The complex «-manifolds in S form a C °° foliation g of S. A related problem is

to ask whether g can be extended to a holomorphic foliation of D +. (Recall that a

foliation of codimension 1 is holomorphic if locally there are coordinates z* such

that the leaves are given as {z*+x = c}.)

Lemma. The following are equivalent near a point p of a smooth Levi flat

hypersurface S C C"+1.

(a) S can be flattened in the sense of (I),

(b) S can be flattened in the sense of (I), and we may take the holomorphic mapping

F in (1) to be smooth on D+ and F: D+ -» F(D +) is to be a biholomorphism,

(c) there is a pluriharmonic function h G C°°(D +) such that h > 0 on D+ and

h = Oon S n D+,and

(d) there is a C°° foliation g of D + u (S n D +) which is holomorphically trivial

on D+ and such that § = S on S n D +.

Received by the editors March 6, 1980.

1980 Mathematics Subject Classification. Primary 32F15, 32H99.

© 1981 American Mathematical Society

0002-9939/81/0000-0166/$02.00

575



576 ERIC BEDFORD AND PAOLO DE BARTOLOMEIS

Proof, (a) => (b) If F is the mapping given by (1), then Re Fn+, is pluriharmonic

on D + and limf e D ♦ >f _s  Re Fn+x = 0. Thus

ReF„+1 6r(fl+u(Sfl D+)).

It follows, then, that F„+x is also C°°. Now we may assume that/) = 0, and that

o/azj is tangent to 5 at 0 for 1 < / < n. Thus we may replace the original mapping

F by (z„ . . . ,z„, Fn+X(z)). By the Hopf lemma oFn+x/dzn+x ¥= 0, so this is a local

biholomorphism.

(b) => (c) This holds because we may take h = Re Fn+,.

(c) =* (d) If we let h denote the pluriharmonic conjugate of h, then H = h + ih

G 6(D) n C°°(D+ u (S n Z>+)). We define the leaves of § as the level sets

{z G D + : H(z) = c}. By the Hopf lemma, 37i =*= 0 on S, so the leaves are smooth,

and g is holomorphic on D +. Since the leaves of g are uniquely determined by

integrating 3« on S, it follows that g extends g.

(d) => (a) If rflmzn+1 is the normal covector to S at p = 0, then we let

T+ = {z G Z) + : z, = • • • = zn = 0}. Shrinking ¿5 + suitably, we may find a

conformai equivalence/: T+ -^ {f G C: Re f > 0} such that/(0) = 0 and Re/ =

0 on r+ n S.

We may also assume that each leaf M of g is closed and intersects I"1" u

(S n T+) in exactly one point. Now we define /on D+ \j (S n D+) by

making it constant on the leaves of g and setting /|r+u(snr+) = /• Clearly / G

C°°(£>+ u (S n D+)), and /G0(£>+) since g is holomorphic. Now F =

(z,, . . . , zn,f) gives the desired map in (a).

C. Rea [6] has given an example of a C°° surface S such that the foliation g does

not have an extension to be holomorphic in a two-sided neighborhood of/?.

Let us assume that Im dzn+x is normal to S at p = 0 and that Im dzn+x points

toward D+. We may parametrize the foliation g of S by G: A" X I^C + X,

1 = [-l, l]cR,A={f eC:jf|< 1).

G(z, t) = (z, ?(/) + g(z, /)), (2)

tp(i) G C°°(/), r/ ^ 0, r/(0) > 0, g(z, t) G C^A" X /), g(0, i) = 0, and g is holo-

morphic in z for fixed /.

Locally, then, we have S = G(A" X /). It will also be useful to parametrize S

slightly differently.

Let y = <p(] — e, e[) be the image of ] — e, e[ under <p, and let T be a small

neighborhood of y in C such that r = r+uyur_, where T* are connected

open sets. We may also write S = G(A" X y) where we set

G(z,T,) = (z,T, + g(z,<p-,(n))) (3)

for z G A", t/ G y. Since the graph of g(z, tj0) for a fixed tj0 G y is the (unique) leaf

of g passing through (0, tj0) we see that S uniquely determines g(z, tj) in (3).

For functions <p, a G C°°(] — e, e[), we will use the following extendibility

criterion.

There is an analytic function ^(tj) G 0(r+) n C°°(r+ u y)
(4)

such that A(rj) = a(çp    (n)) for all ij G y.
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Remark. We note that (4) is a nontrivial criterion which is not satisfied for

general q>, a G C°°(] — e, e[). For example, we may take <p(/) = / and let a +, a~ G

C°°(R) be functions that are nowhere real analytic but such that a~(t) extends to

be holomorphic in {Im f ^ 0}. Then the pair (<p, a+ + a~) does not satisfy (4) on

any interval.

Theorem. Let the surface S be a C°°, Levi flat hypersurface in C+i, and let us

represent S locally in the form (3). Then S can be locally flattened at 0 G S in the

sense of (I) if and only if the pair (<p(t), g(z, t)) satisfies (4) holomorphically in z, i.e.

there is a function g G 0(A" X T+) n C°(A" X (T+ u y)) such that g|A„x? =

g(z,<p ~'(tj)).

Before giving the proof we state a corollary.

Corollary. There is a C°°, Levi flat hypersurface S that cannot be mapped (in the

local one-sided sense of (1)) to a real analytic Levi fiat surface S' in such a way that

limi_vJ.6Z)+ F(f ) = p' G S' exists.

The corollary follows from the Theorem since we may biholomorphically flatten

5' in a neighborhood of p' and we may choose S to be given by a pair (<p, g) which

does not satisfy (4).

This is analogous to a result of Faran [2] for strongly pseudoconvex domains.

Faran's result uses the local invariants of Chern and Moser [1] and the boundary

regularity of F, proved by Fefferman [3]. In our case, there are neither local

invariants nor boundary regularity for biholomorphisms.

Proof of the Theorem. First we show that S can be flattened if g(z, tj) is given.

We note that dg(0, f)/dt ¥= 0, and thus F: A" X Y+ -> D + given by F(z, tj) =

(z, tj + g(z, tj)) is a biholomorphism of a one-sided neighborhood of 0. By the

Riemann mapping theorem there is a holomorphic equivalence

xp:T+ ̂ {Ü GA:Imf > 0}

such that i//(0) = 0. Restricting to a small neighborhood of 0, we see that \p maps y

to the real axis. If ^(z, tj) = (z, ^(tj)) then ^lr(F ~ ') = F is the desired mapping for

(1).
Conversely, we suppose that S can be flattened and show that (<p(t), g(z, t))

satisfy (4).

By the Lemma, there is a pluriharmonic h G C°°(D + U (S n D +)) such that

h = 0 on S and « > 0 on D+. Let « be a pluriharmonic conjugate so that

H = h + ih<E6(D +). We defineg(z, tj) on A" X T+ by

H(z, - + g(z, t,)) = H(0, tj) (5)

for all z G (A')n where A'ccA is some smaller disk. Since aH/ar¡ ^0 on

A X {0}, we see that we may use (5) to define g: A" xT+^C implicitly (recall

that we are free to shrink T+). Since H(0, tj) is analytic in tj for tj G r+ we see that

g G 0(A" X T+) n CM(A" X (r+ u y)). Further, since for fixed tj0 G y the graph

of g(z, tj0) is the leaf of g passing through (0, tjq), it follows that g(z, i¡¿) =

g(z, <p_1(tj0)) and thus (tp, g) satisfies (4).
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