LEVI FLAT HYPERSURFACES WHICH ARE NOT HOLOMORPHICALLY FLAT

ERIC BEDFORD AND PAOLO DE BARTOLOMEIS

ABSTRACT. A real analytic, Levi flat hypersurface $S \subset \mathbb{C}^n$ is locally biholomorphically flat. It is shown here that if S is Levi flat and C^{∞} , then in general it is not possible to flatten S, even in a local, "one-sided" sense.

If $S \subset \mathbb{C}^{n+1}$ is a smooth hypersurface whose Levi form vanishes identically then S is a 1-parameter family of complex manifolds of dimension n. If S is real analytic, then locally one may choose holomorphic coordinates z^* such that $S = \{\text{Re } z_{n+1}^* = 0\}$. Let us fix $p \in S$ and fix one side of S at p; we let D^+ denote a small one-sided neighborhood of S at p, which, after shrinking, will be again denoted by D^+ .

We consider the possibility of a local one-sided flattening of S in the following sense.

There exists a holomorphic map
$$F: D^+ \to \{z \in \mathbb{C}^{n+1}: \text{Re } z_{n+1} > 0\}$$
 such that if $\{\zeta_j\} \subset D^+$ and $\lim_{j \to \infty} \operatorname{dist}(\zeta_j, S)$ (1) $= 0$ then $\lim_{j \to \infty} \operatorname{dist}(F(\zeta_j), \{\text{Re } z_{n+1} = 0\}) = 0.$

It is easily seen that S cannot be flattened in the sense of (1) if the Levi form of S does not vanish identically (cf. condition (c) of the lemma). Related results have been obtained by Henkin [4] and Pinčuk [5]. The point of this paper is that Levi flatness is not sufficient for the surface S to be flattened.

The complex *n*-manifolds in S form a C^{∞} foliation \mathfrak{F} of S. A related problem is to ask whether \mathfrak{F} can be extended to a holomorphic foliation of D^+ . (Recall that a foliation of codimension 1 is *holomorphic* if locally there are coordinates z^* such that the leaves are given as $\{z_{n+1}^* = c\}$.)

LEMMA. The following are equivalent near a point p of a smooth Levi flat hypersurface $S \subset \mathbb{C}^{n+1}$.

- (a) S can be flattened in the sense of (1),
- (b) S can be flattened in the sense of (1), and we may take the holomorphic mapping F in (1) to be smooth on \overline{D}^+ and F: $D^+ \to F(D^+)$ is to be a biholomorphism,
- (c) there is a pluriharmonic function $h \in C^{\infty}(\overline{D}^+)$ such that h > 0 on D^+ and h = 0 on $S \cap \overline{D}^+$, and
- (d) there is a C^{∞} foliation $\tilde{\mathfrak{F}}$ of $D^+ \cup (S \cap \overline{D}^+)$ which is holomorphically trivial on D^+ and such that $\tilde{\mathfrak{F}} = \mathfrak{F}$ on $S \cap \overline{D}^+$.

Received by the editors March 6, 1980.

1980 Mathematics Subject Classification. Primary 32F15, 32H99.

PROOF. (a) \Rightarrow (b) If F is the mapping given by (1), then Re F_{n+1} is pluriharmonic on D^+ and $\lim_{\zeta \in D^+, \zeta \to S}$ Re $F_{n+1} = 0$. Thus

Re
$$F_{n+1} \in C^{\infty}(D^+ \cup (S \cap \overline{D}^+)).$$

It follows, then, that F_{n+1} is also C^{∞} . Now we may assume that p=0, and that $\partial/\partial z_j$ is tangent to S at 0 for $1 \le j \le n$. Thus we may replace the original mapping F by $(z_1, \ldots, z_n, F_{n+1}(z))$. By the Hopf lemma $\partial F_{n+1}/\partial z_{n+1} \ne 0$, so this is a local biholomorphism.

- (b) \Rightarrow (c) This holds because we may take $h = \text{Re } F_{n+1}$.
- (c) \Rightarrow (d) If we let \tilde{h} denote the pluriharmonic conjugate of h, then $H = h + i\tilde{h}$ $\in \mathcal{O}(D) \cap C^{\infty}(D^+ \cup (S \cap \overline{D}^+))$. We define the leaves of $\tilde{\mathfrak{F}}$ as the level sets $\{z \in \overline{D}^+ : H(z) = c\}$. By the Hopf lemma, $\partial h \neq 0$ on S, so the leaves are smooth, and $\tilde{\mathfrak{F}}$ is holomorphic on D^+ . Since the leaves of \mathfrak{F} are uniquely determined by integrating ∂h on S, it follows that $\tilde{\mathfrak{F}}$ extends \mathfrak{F} .
- (d) \Rightarrow (a) If $d \text{ Im } z_{n+1}$ is the normal covector to S at p=0, then we let $\Gamma^+=\{z\in D^+\colon z_1=\cdots=z_n=0\}$. Shrinking D^+ suitably, we may find a conformal equivalence $f\colon \Gamma^+\to \{\zeta\in \mathbb{C}\colon \operatorname{Re}\zeta>0\}$ such that f(0)=0 and $\operatorname{Re}f=0$ on $\overline{\Gamma}^+\cap S$.

We may also assume that each leaf M of $\tilde{\mathfrak{F}}$ is closed and intersects $\Gamma^+ \cup (S \cap \overline{\Gamma}^+)$ in exactly one point. Now we define \tilde{f} on $D^+ \cup (S \cap \overline{D}^+)$ by making it constant on the leaves of $\tilde{\mathfrak{F}}$ and setting $\tilde{f}|_{\Gamma^+ \cup (S \cap \overline{\Gamma}^+)} = f$. Clearly $\tilde{f} \in C^{\infty}(D^+ \cup (S \cap \overline{D}^+))$, and $\tilde{f} \in \emptyset(D^+)$ since $\tilde{\mathfrak{F}}$ is holomorphic. Now $F = (z_1, \ldots, z_n, \tilde{f})$ gives the desired map in (a).

C. Rea [6] has given an example of a C^{∞} surface S such that the foliation \mathfrak{F} does not have an extension to be holomorphic in a two-sided neighborhood of p.

Let us assume that Im dz_{n+1} is normal to S at p=0 and that Im dz_{n+1} points toward D^+ . We may parametrize the foliation \mathfrak{F} of S by $G: \Delta^n \times I \to \mathbb{C}^{n+1}$, $I = [-1, 1] \subset \mathbb{R}, \Delta = \{ \zeta \in \mathbb{C} : |\zeta| < 1 \}.$

$$G(z,t) = (z,\varphi(t) + g(z,t)), \tag{2}$$

 $\varphi(t) \in C^{\infty}(I)$, $\varphi' \neq 0$, $\varphi'(0) > 0$, $g(z, t) \in C^{\infty}(\Delta^n \times I)$, g(0, t) = 0, and g is holomorphic in z for fixed t.

Locally, then, we have $S = G(\Delta^n \times I)$. It will also be useful to parametrize S slightly differently.

Let $\gamma = \varphi(] - \varepsilon$, $\varepsilon[$) be the image of $] - \varepsilon$, $\varepsilon[$ under φ , and let Γ be a small neighborhood of γ in C such that $\Gamma = \Gamma^+ \cup \gamma \cup \Gamma^-$, where Γ^\pm are connected open sets. We may also write $S = G(\Delta^n \times \gamma)$ where we set

$$G(z, \eta) = \left(z, \eta + g(z, \varphi^{-1}(\eta))\right) \tag{3}$$

for $z \in \Delta^n$, $\eta \in \gamma$. Since the graph of $g(z, \eta_0)$ for a fixed $\eta_0 \in \gamma$ is the (unique) leaf of \mathfrak{F} passing through $(0, \eta_0)$ we see that S uniquely determines $g(z, \eta)$ in (3).

For functions φ , $a \in \mathbb{C}^{\infty}(] - \varepsilon$, $\varepsilon[)$, we will use the following extendibility criterion.

There is an analytic function
$$A(\eta) \in \mathcal{O}(\Gamma^+) \cap C^{\infty}(\Gamma^+ \cup \gamma)$$
 such that $A(\eta) = a(\varphi^{-1}(\eta))$ for all $\eta \in \gamma$.

REMARK. We note that (4) is a nontrivial criterion which is not satisfied for general φ , $a \in C^{\infty}(] - \varepsilon$, $\varepsilon[$). For example, we may take $\varphi(t) = t$ and let a^+ , $a^- \in C^{\infty}(\mathbb{R})$ be functions that are nowhere real analytic but such that $a^{\pm}(t)$ extends to be holomorphic in $\{\text{Im } \zeta \geq 0\}$. Then the pair $(\varphi, a^+ + a^-)$ does not satisfy (4) on any interval.

THEOREM. Let the surface S be a C^{∞} , Levi flat hypersurface in \mathbb{C}^{n+1} , and let us represent S locally in the form (3). Then S can be locally flattened at $0 \in S$ in the sense of (1) if and only if the pair $(\varphi(t), g(z, t))$ satisfies (4) holomorphically in z, i.e. there is a function $\tilde{g} \in \mathcal{O}(\Delta^n \times \Gamma^+) \cap C^{\infty}(\Delta^n \times (\Gamma^+ \cup \gamma))$ such that $\tilde{g}|_{\Delta^n \times \gamma} = g(z, \varphi^{-1}(\eta))$.

Before giving the proof we state a corollary.

COROLLARY. There is a C^{∞} , Levi flat hypersurface S that cannot be mapped (in the local one-sided sense of (1)) to a real analytic Levi flat surface S' in such a way that $\lim_{\zeta \to p, \zeta \in D^+} F(\zeta) = p' \in S'$ exists.

The corollary follows from the Theorem since we may biholomorphically flatten S' in a neighborhood of p' and we may choose S to be given by a pair (φ, g) which does not satisfy (4).

This is analogous to a result of Faran [2] for strongly pseudoconvex domains. Faran's result uses the local invariants of Chern and Moser [1] and the boundary regularity of F, proved by Fefferman [3]. In our case, there are neither local invariants nor boundary regularity for biholomorphisms.

PROOF OF THE THEOREM. First we show that S can be flattened if $\tilde{g}(z, \eta)$ is given. We note that $dg(0, t)/dt \neq 0$, and thus $\tilde{F}: \Delta^n \times \Gamma^+ \to D^+$ given by $\tilde{F}(z, \eta) = (z, \eta + \tilde{g}(z, \eta))$ is a biholomorphism of a one-sided neighborhood of 0. By the Riemann mapping theorem there is a holomorphic equivalence

$$\psi \colon \Gamma^+ \to \{\zeta \in \Delta \colon \operatorname{Im} \zeta > 0\}$$

such that $\psi(0) = 0$. Restricting to a small neighborhood of 0, we see that ψ maps γ to the real axis. If $\Psi(z, \eta) = (z, \psi(\eta))$ then $\Psi(\tilde{F}^{-1}) = F$ is the desired mapping for (1).

Conversely, we suppose that S can be flattened and show that $(\varphi(t), g(z, t))$ satisfy (4).

By the Lemma, there is a pluriharmonic $h \in C^{\infty}(D^+ \cup (S \cap \overline{D}^+))$ such that h = 0 on S and h > 0 on D^+ . Let \tilde{h} be a pluriharmonic conjugate so that $H = h + i\tilde{h} \in \mathcal{O}(D^+)$. We define $\tilde{g}(z, \eta)$ on $\Delta^n \times \Gamma^+$ by

$$H(z, \eta + \tilde{g}(z, \eta)) = H(0, \eta) \tag{5}$$

for all $z \in (\Delta')^n$ where $\Delta' \subset \subset \Delta$ is some smaller disk. Since $\partial H/\partial \eta \neq 0$ on $\Delta \times \{0\}$, we see that we may use (5) to define $\tilde{g} \colon \Delta^n \times \Gamma^+ \to \mathbb{C}$ implicitly (recall that we are free to shrink Γ^+). Since $H(0, \eta)$ is analytic in η for $\eta \in \Gamma^+$ we see that $\tilde{g} \in \mathcal{O}(\Delta^n \times \Gamma^+) \cap C^{\infty}(\Delta^n \times (\Gamma^+ \cup \gamma))$. Further, since for fixed $\eta_0 \in \gamma$ the graph of $\tilde{g}(z, \eta_0)$ is the leaf of \mathfrak{F} passing through $(0, \eta_0)$, it follows that $\tilde{g}(z, \eta_0) = g(z, \varphi^{-1}(\eta_0))$ and thus (φ, g) satisfies (4).

REFERENCES

- 1. S. S. Chern and J. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 213-271.
- 2. J. Faran, Non-analytic hypersurfaces in Cⁿ, Math. Ann. 226 (1977), 121-123.
- 3. C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65.
- 4. G. M. Henkin, An analytic polyhedron is not holomorphically equivalent to a strictly pseudoconvex domain, Soviet Math. Dokl. 14 (1973), 858-862.
- 5. S. I. Pinčuk, Biholomorphic inequivalence of bounded domains with smooth and piecewise-smooth boundary, Dokl. Akad. Nauk SSSR 247 (1979), 554-557. (Russian)
- 6. C. Rea, Levi-flat submanifolds and holomorphic extensions of foliations, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 26 (1972), 665-681.

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08544 (Current address of Eric Bedford)

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540

Current address (Paolo de Bartolomeis): Istituto Matematico "U. Dini", viale Morgagni 67/A, I-50134 Firenze, Italy