GENERALIZATIONS OF CERTAIN FUNDAMENTAL RESULTS ON FINITE GROUPS

MORTON E. HARRIS AND DAVID A. SIBLEY

In this short note, we synthesize various fundamental results of finite groups and their proofs to obtain a generalization of J. G. Thompson's fundamental $\boldsymbol{A} \times \boldsymbol{B}$ Lemma (cf. [5, Theorem 5.3.4]), a generalization of a fundamental result of \mathbf{H}. Bender (cf. [2, Satz] and [4, Theorem 3.1]) and a generalization of an important result of N. Blackburn (cf. [3, Theorem]).

Our notation is standard and tends to follow the notation of [5]. In particular, p denotes a prime integer and all groups that we consider are finite.

Our first four results concern the following basic situation.
V is a p-group acted on by the group G where $G=K P$ with $K=O_{p^{\prime}}(G)$ and $P \in \operatorname{Syl}_{p}(G)$.

We begin by observing that the proof of [2, Satz] yields a generalization of [5, Theorem 5.2.4].

Theorem 1. Suppose that V is abelian. Let $k \in K$ be such that $\Omega_{1}\left(C_{V}(P)\right) \leqslant$ $C_{V}(k)$. Then $[V, k]=1$.

Proof. By [5, Theorem 5.2.4] and the observation that $\Omega_{1}\left(C_{V}(P)\right)=C_{\Omega_{1}(V)}(P)$, we may assume that $V=\Omega_{1}(V)$. Moreover, by replacing G by $\bar{G}=G / C_{K}(V)$, we may assume that $C_{K}(V)=1$. Also $K_{1}=C_{K}\left(C_{V}(P)\right)$ is P-invariant and hence we may assume that $K=K_{1}$ and $C_{V}(P) \leqslant C_{V}(G)$. But $V=C_{V}(K) \times[V, K]$ and P acts on $[V, K]$ by $\left[5\right.$, Theorem 5.2.3]. Suppose that $[V, K] \neq 1$. Then $1 \neq C_{V}(P) \cap$ $[V, K] \leqslant C_{V}(K)$ which is a contradiction. Thus $[V, K]=1$ and we are done.

The next result also applies the proof of [2, Satz] to generalize the fundamental results [5, Theorems 5.3.4 and 5.3.10] and [4, Theorem 2.4] when $p \neq 2$.

Theorem 2. Suppose that $p \neq 2$. Let $k \in K$ be such that $\Omega_{1}\left(C_{V}(P)\right)<C_{V}(k)$. Then $[V, k]=1$.

Proof. As above, we may assume that $C_{K}(V)=1$ and $\Omega_{1}\left(C_{V}(P)\right) \leqslant C_{V}(G)$. Then [5, Theorem 5.3.13] implies that V contains a characteristic subgroup D of class at most 2 and exponent p such that K acts faithfully on D. Then $C_{D}(P)<$ $\Omega_{1}\left(C_{V}(P)\right) \leqslant C_{V}(G)$ and hence we may assume that $V=D$. As in [2, (B)], we now use an observation of R. Baer (cf. [1, Theorem B.1]) to conclude that we may assume that V is abelian. But then $C_{V}(P) \leqslant C_{V}(G)$ and an application of Theorem 1 completes the proof.

[^0]Note that Theorem 2 is false for $p=2$. We give two examples.
(1) Let V be a direct product of $n \geqslant 1$ quaternion groups of order 8 and let $G=K P$ where K is an elementary abelian group of order $3^{n}, P^{\#}$ consists of an involution inverting every element of K and where $C_{V}(P)=C_{V}(K)=\Omega_{1}(V)$.
(2) Let V be a 2-group of type $U_{3}(4)$ and let $G=K P \leq \operatorname{Aut}(V)$ with G a Frobenius group of order 20 such that $C_{V}(P)<C_{V}(K)=Z(V)=\Omega_{1}(V)$, (cf. [6, VI, Lemma 2.5]).

However, utilizing the proof of [4, Theorem 3.1], we can demonstrate
Theorem 3. Suppose that $p=2$. Let $k \in K$ be such that $\left\langle[V, P], \Omega_{2}\left(C_{V}(P)\right)\right\rangle \leqslant$ $C_{\nu}(k)$. Then $[V, k]=1$.

Proof. As above, we may assume that $C_{K}(V)=1,\left\langle[V, P], \Omega_{2}\left(C_{V}(P)\right)\right\rangle \leqslant$ $C_{V}(K)$ and $\Omega_{2}\left(C_{V}(P)\right) \leqslant C_{V}(G)$. Also, since G acts on $C_{V}(K)$ and on $N_{V}\left(C_{V}(K)\right)$, we may assume that $C_{V}(K) \unlhd V$. As $V=[V, K] C_{V}(K)$ by [5, Theorem 5.3.5], $[V, K]=[V, K, K]$ by $[5$, Theorem 5.3.6] and $[V, K]$ is G-invariant by [5, Theorem 2.2.1(iii)], we may assume that $V=[V, K]$. Theorem 1 implies that K acts trivially on every characteristic abelian subgroup of V. Hence [5, Exercise 5.4] implies that V is a nonabelian special 2-group. Thus $\exp (V)=4$ and $C_{V}(P)<C_{V}(G)$. On the other hand, $K=[K, P] C_{K}(P)$ and $P \times C_{K}(P)$ acts on V. Since $C_{K}(V)=1,[5$, Theorem 5.3.4] implies that $C_{K}(P)=1$ and $K=[K, P]$. Note that $[V, P, K]=1$ and $[K, V, P]=[V, P] \leqslant C_{V}(K)$. Hence $[P, K, V]=[K, V] \leqslant C_{V}(K) \unlhd V$ by [5, Theorem 2.2.3(ii)]. Thus K stabilizes the chain $V>C_{V}(K) \geqslant 1$ and [5, Theorem 5.3.2] forces $K=1$ to complete the proof of Theorem 3.

It is easy to see that Theorem 3 implies Thompson's $A \times B$ Lemma [5, Theorem 5.3.4] when $p=2$. Suppose in the above that $G=K \times P, p=2$, and $C_{V}(P)<$ $C_{V}(k)$ for some $k \in K$. Proceed by induction on $|V|$. Since $[V, P]<V$ and G acts on $[V, P]$, we conclude that $[V, P] \leqslant C_{V}(k)$. Then Theorem 3 yields the desired conclusion $[V, k]=1$.

Corollary 3.1. Suppose that $p=2$ and $[V, P]$ is contained in a characteristic abelian subgroup of V. Let $k \in K$ be such that $\Omega_{2}\left(C_{V}(P)\right)<C_{V}(k)$. Then $[V, k]=1$.

Proof. Let $1=M^{\prime} \leqslant M$ char V. Thus G acts on M and $\Omega_{1}\left(C_{M}(P)\right) \leqslant$ $\Omega_{2}\left(C_{V}(P)\right) \leqslant C_{V}(k)$. Then Theorem 1 implies that $M \leqslant C_{\nu}(k)$ and Theorem 3 yields the desired conclusion.

The next result generalizes and presents an alternate proof of [3, Theorem].
Theorem 4. Let G be a finite p-group, let E be a subgroup of G and let $\alpha \in \operatorname{Aut}(G)$ be such that $E \leqslant C_{G}(\alpha)$. Suppose that $\Omega_{1}\left(C_{G}(E)\right)<C_{G}(\alpha)$ if $p \neq 2$ and $\Omega_{2}\left(C_{G}(E)\right)<C_{G}(\alpha)$ if $p=2$. Then the order of α is a power of p.

Proof. Suppose that α is also a p^{\prime}-element of $\operatorname{Aut}(G)$. Since $\langle\alpha\rangle \times E$ acts on G and $\langle\alpha\rangle$ acts faithfully on $C_{G}(E)$ by [5, Theorem 5.3.4], we conclude that $\alpha=1$ by Theorem 2 and Corollary 3.1 to complete the proof.

For our final result, we apply Theorems 2 and 3 to obtain generalizations of the fundamental results [2, Satz] and [4, Theorem 3.1] of H. Bender.

Theorem 5. Let H be a p-constrained group, let $Q \in \operatorname{Syl}_{p}(H)$, let $R=Q \cap$ $O_{p^{\prime}, p}(H)$ and let A be a subgroup of Q. Also let K be an A-invariant p^{\prime}-subgroup of G and observe that this implies that $[A \cap R, K]<O_{p^{\prime}}(H)$. In addition, assume the following two conditions:
(a) if $p \neq 2$, then $\left[\Omega_{1}\left(C_{R}(A)\right), K\right]<O_{p^{\prime}}(H)$; and
(b) if $p=2$, then $\left\langle\left[\Omega_{2}\left(C_{R}(A)\right), K\right],[R, A, K]\right\rangle\left\langle O_{p^{\prime}}(H)\right.$.

Then $K \leqslant O_{p^{\prime}}(H)$.
Proof. Clearly we may assume that $O_{p^{\prime}}(H)=1$ and $R=O_{p}(H)$. Then $K A$ acts on $R, C_{H}(R)=Z(R)$ and Theorems 2 and 3 immediately yield the desired conclusion.

References

1. R. Baer, Groups with abelian central quotient group, Trans. Amer. Math. Soc. 44 (1938), 357-386.
2. H. Bender, Über den grässten p^{\prime}-Normalteiler in p-auflösbaren Gruppen, Arch. Math. (Basel) 18 (1967), 15-16.
3. N. Blackburn, Automorphisms of finite p-groups, J. Algebra 3 (1966), 28-29.
4. T. M. Gagen, Topics in finite groups, London Math. Soc. Lecture Notes Series, no. 16, Cambridge Univ. Press, London, 1976.
5. D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
6. D. Gorenstein and K. Harada, Finite groups whose 2-subgroups are generated by at most 4 elements, Mem. Amer. Math. Soc. No. 147 (1974).

School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802

[^0]: Received by the editors July 9, 1980 and, in revised form, August 21, 1980.
 1980 Mathematics Subject Classification. Primary 20D45; Secondary 20 E34.

