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NOTE ON ASYMPTOTIC PRIME DIVISORS,

ANALYTIC SPREADS AND THE ALTITUDE FORMULA

L. J. RATLIFF, JR.1

Abstract. The main result gives several characterizations of Noethenan domains

that satisfy the altitude formula in terms of analytic spreads and asymptotic prime

divisors.

1. Introduction. In [7], I proved several results concerning the prime divisors ( =

associated primes) of /" and the integral closure of /", where / is an ideal in a

Noetherian ring R and n is large. These results were considerably sharpened in [1]

and [2]. In particular, in [1], Brodmann showed that all large powers of /" have the

same prime divisors, and in [7, Theorem 2.5], I showed that the integral closures of

all large powers of /" have the same prime divisors. Using this last result, McAdam

proved, in [3, Theorem 3], the very interesting result that if / C P are ideals in a

Noetherian domain R that satisfies the altitude formula and if P is prime, then P is

a prime divisor of the integral closures of all large powers of /" if and only if

(height P) equals the analytic spread of IRP. Our main results, Theorems 1 and 2,

were suggested by McAdam's result and the related result [6, Theorem 2.29], and

they characterize Noetherian domains that satisfy the altitude formula in terms of

these asymptotic prime divisors and analytic spreads. Then, after proving several

corollaries of these theorems, we close by showing certain additional rings (besides

those in [3, Theorem 6]) have the property that a prime ideal is a prime divisor of

all large powers of an ideal / if and only if it is a prime divisor of the integral

closures of all large powers of /.

2. Main results. Before proving our first characterization of the altitude formula,

we first fix some notation and give the relevant definitions.

An integral domain R satisfies the altitude formula if for all finitely generated

extension domains A of R and all prime ideals P in A, height P +

trd(A/P)/(R/p) = height/? + trdA/R, where/? = P n R and trd C/D denotes

the transcendence degree of the integral domain C over its subdomain D.

For an ideal / in a Noetherian ring R, v(I) denotes the minimum number of

generators of /, and Ia denotes the integral closure of I in R (so Ia = {x G R; x is a

root of a polynomial of the form T" + /'17,"_1 + • • ■ + /„, where ij G IJ}). I is
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height unmixed in case all prime divisors of I have the same height. It is known [1]

that all large powers of I have the same prime divisors, and we let A *(I) denote

this set: A*(I) = Ass(R/I") for large n. Likewise, for all large n the ideals (I")a

have the same prime divisors, by [7, Theorem 2.5], and we let A*(I) denote this set:

Â*(I) = Ass(Ä/(/")a) for large n. Finally, 9t(Ä, /) = R[tl, u] (t an indeterminate

and u = 1/0 is the Rees ring of R with respect to I, and if R is local with maximal

ideal M, then the analytic spread 1(1) of I is defined by 1(1) =

altitude m(R, /)/(«, M)3t(Ä, /); hence 1(7) < altitude R.

For use in the proof of Theorem 1, we note that SR = ÏR(R, I) is a graded subring

of R[t, u] and M(RS, IRS) = 9ts, if S is an m.c. set in R such that I n S = 0.

Also, if R is local, then altitude SR = altitude Ä + L

The following theorem shows more clearly the relationships between the condi-

tions considered in [3, Theorem 3]. In the process of proving the theorem, we give a

slightly different proof of [3, Theorem 3].

Theorem 1. The following statements are equivalent for a Noetherian domain R:

(1.1) R satisfies the altitude formula.

(1.2) If I is an ideal in R and P G Spec R is a prime divisor of (I")a for some

n > 1, then height P = l(IRP).

(1.3) IflQP are ideals in R such that P G Â*(I), then height P = l(IRP).

(1.4) If I is an ideal in R such that height I = v(I), then (I")a is height unmixed

for all n > 1.
Moreover, these statements imply, but are not equivalent to, the converse of (1.3).

Proof. It is clear that we may restrict attention to the case I ^ (0).

Assume (1.1) holds, let I be an ideal in R, and let 5t = R[tl, u] be the Rees ring

of R with respect to I. Then it is shown in [7, Theorem 2.5] that if P is a prime ideal

in R that is a prime divisor of (/")„ for some n, then there exists a prime divisor Q

of (udl)a such that Q n R = P. Since (1.1) holds, height Q + tid(m/Q)/(R/P) =
height P + trd 91/R and height ß = 1, since Q = Q' n 9Ï with Q' a (height one)

prime divisor of m9t', where 3r' is the integral closure of 91. Thus height P =

trd(¡R/Q)/(R/P) = (say) /. Let S = R - P. Then altitude 9ÎS - 1 =

altitude RP = height P = t = trd(ms/Q 9is)/(Rs/PRS) = [4, (14.6)]

altitude $is/Qdls = depth Q$is. Also, it is clear that depth(w, i>)3rs < altitude ?RS

— 1 = depth Qtils (as just shown), and depth Q?RS < depth(w, P)9ts (since

(u, PWs Ç Ö9ts), so height P = t = depth Ö9ls = depth(w, P)dts =
altitude 9îs/(m, P)9î5 = l(IRP). Therefore (1.1) => (1.2).

It is clear that (1.2) => (1.3).

Assume that (1.3) holds and that I is an ideal in R such that height I = v(I). Fix

n > 1 and let P be a prime divisor of (I")a. Then P G Â*(I) by [7, Theorem 2.5]

so (1.3) implies height P = l(IRP). Now it is clear that l(IRP) < v(IRP) < v(I) =

height I < height P, so it follows that height P = height I, and so (1.4) holds.

(1.4) -»(1.1) by [6, Theorem 2.29].

Next, assume (1.1) holds and let I ç P be ideals in R such that P is prime and

height P = l(IRP). Then to show that P G A *(I) we may assume that R is local
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and P is its maximal ideal. Then l(IRP) = height P implies 1(1) = altitude R, so

altitude 3t/(«, P)m = altitude R where 91 = 9Î(/?, /). Therefore height(u, P)9t =

1, since depth(«, P)9t = altitude R and altitude 91 = altitude R + I. Thus there

exists a height one prime divisor Q of m91 such that Q n R = P. Then ß is a prime

divisor of («9l)a so the proof of [7, Theorem 2.5] shows that P is a prime divisor of

(/")„ for all large n. Therefore each of (1.1)—(1.4) implies the converse of (1.3).

Finally, let R be a local domain of altitude two that is analytically unramified

and whose integral closure has a height one maximal ideal. (For example, [4, pp.

203-205, Ex. 2] in the case m = 0 and r = 1.) Then R does not satisfy the altitude

formula. However, we now show that the converse of (1.3) does hold for R.

Namely, let I Q P be ideals in R such that P is prime. If height P = 1, then clearly

height P = l(IRP) and P G Â*(I). If height P = 2, then P is a prime divisor of all

nonzero ideals contained in large powers of P by [8, (9)]. Also, R is analytically

unramified, so I" <Z (I")a ç (P")a ç PmW where m(n) -^ oo with n, by [9, Theo-

rem 2]. Therefore P G A*(I) for all nonzero ideals I in R, so this holds, in

particular when height P = l(IRP).    Q.E.D.

Theorem 2 gives some additional characterizations of the altitude formula.

Theorem 2. The following statements are equivalent for a Noetherian domain R:

(2.1) R satisfies the altitude formula.

(2.2) If I Q M are ideals in R such that M is maximal, height I = v(I), and

height M/1 = 1, then, for all n > l, M is not aprime divisor of(I")a.

(2.3) If I Q M are ideals in R such that M is maximal, height M/1 = 1, and I is

integrally dependent on an ideal B such that v(B) = height B then, for all n > 1, M

is not aprime divisor of (I")a.

(2.4) If I is an ideal in R that is generated by h elements then, for all n > 1, (/")„

has no prime divisor of height > h.

Proof. (2.1) <=> (2.2) by [6, Theorem 2.29].

It is clear that (2.3) => (2.2). For the converse, let B Ç / Ç M be as in (2.3). Then

height M/B = 1, so (2.2) implies M is not a prime divisor of (B")a for all n > 1.

Since B Q I C Ba, we have (I")a = (B")a for all n, hence (2.2) =* (2.3).

(2.4) => (2.1), by (1.4) => (1.1). And, if (2.1) holds, if I is as in (2.4), and if P is a

prime divisor of (I")a for some n > 1, then height P = l(IRP), by (1.1) => (1.2), and

l(IRP) < v(IRP) < v(I) < h, so (2.1) => (2.4).   Q.E.D.

Remarks. (3.1) It is shown in [7, Theorem 2.5] that if a prime ideal P in R is a

prime divisor of (I")a for some n > 1, then P is a prime divisor of (I")a for all

large n. Therefore, the phrase "for all n > 1" in (1.4), (2.2), and (2.3) can be

replaced by "for infinitely many n".

(3.2) It is shown in [6, Example 2.28(b)] that there exists a local ring (R, M) and

an ideal I in R such that v(I) = height / = altitude R - 1, M g Â*(I), and R is

not quasi-unmixed (which is equivalent to the altitude formula in the domain case).

I do not know if this can hold when R is an integral domain.

We will now give several corollaries of Theorems 1 and 2.
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Corollary 4. Let R be a Noetherian domain that satisfies the altitude formula and

let I Q P be ideals in R such that P is prime. Then the following statements hold:

(4.1) [3, Theorem 3]. P G Â*(I) if and only if height P = l(IRP).

(4.2) If R is local with maximal ideal M and if depth / = 1, then height 7 = 1(1)

= altitude R - \ if and only if M G Â*(I).

Proof. (4.1) is clear by Theorem 1.

(4.2) Since depth 7 = 1 and R is catenary, height 7 = altitude R — 1. So, since

1(1) = 1(1 RM), (4.2) readily follows from (4.1).    Q.E.D.

Remark 5. Concerning the condition height 7 = 1(1) in (4.2) (and also in (9.2),

(9.3), and Corollary 11), note that if R/M is infinite, then height I = 1(1) if and only

if I is integrally dependent on an ideal generated by height / elements. For, if R/M is

infinite, then 1(1) is the number of elements in a minimal basis of a minimal

reduction of 7, by [5, Theorem 1 p. 150]. Therefore, if height / = 1(1), then 7 is

integrally dependent on an ideal generated by height 7 elements. And, conversely,

if 7 is integrally dependent on such an ideal, then 1(7) < height /, by [5, Corollary,

p. 151], and so height / = 1(7), by [5, Lemma 4, p. 151].

The next corollary is closely related to (4.2), and it shows, in particular, the well

known fact that local domains of altitude one satisfy the altitude formula.

Corollary 6. Let (R, M) be a local domain of altitude d > 1. Then R satisfies

the altitude formula if and only if there does not exist a system of parameters

bv . . . , bd in R such that M is a prime divisor of ((bt, . . . , bd_i)n)afor some n > 1.

Proof. If R satisfies the altitude formula and bv . . ., bd is a system of parame-

ters in R, then height(6,, . . . , bd_¡)R = d — 1 (since R is catenary), so M is not a

prime divisor of ((bu . . . ,bd_i)")a for all n > 1, by (2.1) => (2.2). Conversely,

assume R does not satisfy the altitude formula. Then, by (2.2) => (2.1), there exists

an ideal I in R such that depth 1=1, v(I) = height I, and M is a prime divisor of

(I")a for some n. Assume height I = h, let (¿>„ . . ., bh) be a minimal basis of /,

and let bh + i in M such that bh + i is not in any minimal prime divisor of I. Then

i>i, ■ ■ ■ , bh+x is a system of parameters in R, since depth 7=1, so h = d — 1 and

the proof is complete.

The next corollary shows an interesting result for local domains that satisfy the

altitude formula. It is, essentially, a special case of Corollary 6, and is analogous to

the fact that the ideal 7 is prime when R is a Macaulay integral domain.

Corollary 7. Let (R, M) be a local domain that satisfies the altitude formula, let

altitude R = d > \, and let L = R[XX, . . . , Xk], where 1 < h < d. Let

b0, b¡, . . . , bh be a subset of a system of parameters in R, and let I =

(b0X} — bx,. . ., bçyXh — bh)L. Then Ia is a prime ideal, L¡ is a regular local ring of

altitude h, and (I")a is Ia-primary for all n > 1.

Proof. L satisfies the altitude formula, since R does, so if P is a prime divisor of

(I")a for some n> \, then height P = I(7L,,) < h, by (1.1) => (1.2). Also, P n R =

(0) and height P = h. To see this, note that b0 G P C\ R, since otherwise b¡ = b0X¡

- (b0Xi - 6,.) <E P n R(i = 1, . . . , h), soh> height P > height^ . . ., bh)L =

height(¿>0, . . . , bh)R = h + 1 (since R is catenary) and this does not hold. Thus,
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with p = P n R and D = 7^,[Ar1, . . ., Xh], PD is proper and contains ß =

(PR,, X, - (bx/b0), . . . , Xh - (bh/b0))D, so h > height 7>7> > height ß =

heightpRj, + h, thus height/?/^ = 0, and so p = P n R = (0) and height P = h.

Therefore 7L, is the quotient field F of R and PD = Q, so LP = DQ =

F^i, . . . , A^Jg is a regular local ring of altitude h. Also, it follows that (ILP)a =

IaLP = QDQ = ILP (since IaRs = (IRs)a always holds and since ILP is prime).

Hence, since none of the ideals (I")a has a prime divisor of height > h, it follows

that Ia is prime and (I")a is Ia-primary.   Q.E.D.

Remark 8. It would be interesting to know if the following strong converse of

Corollary 7 holds: if there exists a system of parameters bv . . ., bd in R such that

the conclusion of Corollary 7 holds, then R satisfies the altitude formula.

(9.1) is a small generalization of (4.2), and (9.2) and (9.3) contain some additional

information. In the proofs of (9.2) and (9.3) we use l(IRP) < 1(7). I do not know a

reference for this, but it is fairly straightforward to prove, and it holds in all local

rings 7? and for all ideals I Q P with P prime.

Corollary 9. Let (R, M) be a local domain of altitude d that satisfies the altitude

formula and let I be an ideal in R such that height I < d. Then the following

statements hold:

(9.1) M G Â*(I) if and only if 1(1) < d.
(9.2) If there exists P G Â*(I) such that height 7 = height P and 1(7) = 1(77?,,),

then height 7 = 1(7).

(9.3) 7/height 7 = 1(7), then (I")a is height unmixed for all n > 1.

Proof. (9.1) By (4.1), M G Â*(I) if and only if height M ^ l(IRM) = 1(7), so if

and only if 1(7) < height M = d.

(9.2) If there exists such P G Â*(I), then height 7 = height P = (by (4.1))

1(77*,,) < 1(7) = height 7, so height 7 = 1(7).

(9.3) Let P G Â*(I). Then 1(7) = height 7 < height P = (by (4.1)) \(IRP) <

1(7), so height P = height 7.    Q.E.D.

Remark 10. It follows readily from (9.3), and (1.4) =>(1.1) together with [5,

Lemma 4, p. 151], that if (R, M) is a local domain such that R/M is infinite, then

R satisfies the altitude formula if and only if for all ideals 7 in R such that

height 7 = 1(7), (I")a is height unmixed for all n > 1. And two additional

characterizations similar to (2.2) and (2.3) with I replacing v readily follow from

this.

The next corollary is an important special case of (10.3), and is somewhat

analogous to the fact that if ß is a primary ideal in a Macaulay ring such that

height ß = v(Q), then Q" is primary for all n.

Corollary 11. Let R be as in Corollary 9 and let ß be a primary ideal in R. If

height ß = I(ß), then (Q")a is primary for all n > 1.

Proof. By (9.3), all the ideals (Q")a are height unmixed, so the conclusion

follows, since Rad(ß")a = Rad ß is prime.   Q.E.D.

This paper will be closed with the following proposition which is related to [3,

Theorem 6]. (As noted at the start of this section, A*(I) = Ass(7?/7") for large n.)
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Proposition 12. Let (R, M) be a local domain of altitude two or three such that

there exists a height one maximal ideal in R ', the integral closure of R. Assume R is

analytically unramified and RP is integrally closed for all nonmaximal height two

prime ideals P in R. Then A*(I) = Â*(I) for all ideals I in R.

Proof. Exactly as in the last paragraph of the proof of Theorem 1, M is in A*(I)

and in A*(I). If altitude R = 3 and P is a height two prime ideal in R, then Rp is

integrally closed, so [3, Theorem 6] shows that P G A*(I) if and only if P G

Â*(I). Finally, if height P = 1, then clearly P G A*(I) if and only if P G Â*(I).

Q.E.D.
It should be noted that Nagata's examples in the cases m = 0 and r = 1 or 2

satisfy the conditions on R in Proposition 12.
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