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ROGER HUNTER   AND ELBERT WALKER

Abstract. We provide a new characterization of S-groups which is used to develop

central results of the theory and, in particular, to show that summands of 5-groups

are S-groups.

1. Introduction. The theory of S-groups was first developed by Warfield in [11].

In that paper, S-groups were introduced as torsion subgroups of balanced projec-

tives (KT-modules), and then characterized as direct sums of certain dense isotype

subgroups of totally projective /»-groups. The class of S-groups properly contains

the class of totally projective /^-groups and Warfield was able to extend the

classification theory of totally projective groups to this new class. The most

important question left open by Warfield was whether summands of S-groups are

themselves S-groups. Recently, Stanton [8] has answered this in the affirmative.

There is now a satisfactory theory of a class of groups (called Warfield groups)

which is a natural extension of the theory of balanced projectives (see, for example,

[3]). In view of Warfield's definition of S-groups, it is natural to ask whether the

torsion subgroup of a Warfield group is an S-group. This was answered in the

affirmative in [2]. Thus the main results of the theory are the classification

theorems (analogues of Ulm's and Zippin's theorems), closure under summands,

and the characterization of S-groups as the torsion subgroups of Warfield groups.

The latter result could be considered the primary motivation for the study of

S-groups.

In this paper we provide (in Theorem 5) a new characterization of S-groups

which does not involve balanced projectives, nor the choice of any specific

containing groups. This characterization is then used to provide short proofs of the

central results described above.

All groups considered will be abelian and local, that is, modules over Zp, the

integers localized at a prime p. Let A be a group. We denote the torsion subgroup

of A by A, and Ext(Z(pcc), A) by c(A). The fundamental facts about c(A) are

conveniently summarized in §2 of [11]. The group of rational numbers will be

denoted by Q. By the rank of A, we mean the rank of Q ® A as a Q-vector space.

The Ulm invariant of A at the ordinal a will be denoted by fA(a) and the Ulm

invariant of A relative to a subgroup B at a by fAyB(a). We will assume familiarity

with the notions and notations of valuated groups developed in [7], and with the

local theory of Warfield groups [3].
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2. Tools. Let B be a subgroup of A. Define

[B:A] = {a G A:p"a G Ti for some « < w}.

Thus [B: A] is the full inverse image of (A/B), under the natural map A —*A/B.

Let B and C be subgroups of A with C G B. The following facts will be needed in

the sequel.

(A) If A/B is torsion free then [C: B] = [C: A].

(B) If B/C is torsion free divisible then [B: A]/B a* [C: ^]/C.

(C) If B/C is torsion free divisible and C is nice in [C: A] then 5 is nice in [B:

A].

Lemma 1. Let A be a group and let a be an ordinal. Then the sequence

0-> c(paA) ^>pac(A) ->pac(A /paA)^>0 is split exact.

Proof. Since/?™ is a radical, [6, Lemma 1.1] shows the sequence is exact. The

sequence splits because c(p"A) is cotorsion SLndp"c(A/paA) is torsion free.   □

For each ordinal a, Lemma 1 shows there is a decomposition pac(A) = c(p"A)

© Xa, where Xa^.pac(A/paA) is cotorsion and torsion free. Set X = © Xx,

where the sum is taken over those limit ordinals not cofinal with u. The sum ©A\

is direct because nonzero elements in distinct Xxs have distinct heights in c(A). We

call X a lncwo subgroup of c(A).

If a basic subgroup of each Xx is chosen, then the resulting basic subgroup B of

© Xx, considered as a valuated subgroup of c(A), is free. By [3, Theorem 31], B is

generated by a nice decomposition basis of [B: c(A)\ and hence by §2(C), we have

X nice in [X: c(A)]. For each limit X not cofinal with w the rank k(X, A) oí the

subgroup of B which was chosen in Xx is clearly an invariant of A which

determines B, and hence c(B), as a valuated group. Lemma 1 shows that k(\, A) is

the rank of the Z/pZ-vector space pxc(A/pxA)/px+lc(A/pxA) which is the in-

variant k(\, A) defined by Warfield [11, p. 158].

3. A characterization of S-groups. Warfield [11] defined an S-group to be the

torsion subgroup of a balanced projective group (balanced projectives are also

known as KT-modules). We refer the reader to [11] and [3] for a discussion of the

properties of balanced projectives. For our purposes, balanced projectives will be

characterized as those groups which contain a nice free valuated subgroup with

totally projective cokernel. From Warfield's point of view, an S-group comes with

a predetermined balanced projective. In this section we characterize S-groups in a

way which avoids the choice of specific balanced projectives. The following lemma

is the basis for the characterization.

Lemma 2. Let A be a reduced torsion group. If for some lncwo subgroup X of c(A)

the quotient [X: c(A)]/X is totally projective then A is an S-group.

Proof. For each limit ordinal X not cofinal with w, choose a/?-basic subgroup Yx

of Xx and set Y = © Yx. Then [X: c(A)]/X =* [Y: c(A)]/ Y by §2(B), and y is a

free valuated subgroup of [ Y: c(A)\. By Theorem 31 in [3], Y is nice in [ Y: c(A)], so

[Y: c(A)] is balanced projective. Since the torsion subgroup of [Y: c(A)] is A, it

follows that A is an S-group.    □
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The next step is to show that all S-groups can be found via Lemma 2. If A is

balanced projective then k(\, A) = 0 for all limit ordinals X not cofinal with <o [11].

In particular, when A is totally projective, the only lncwo subgroup of c(A) is

trivial. A balanced projective group A is X-elementary if X is a limit ordinal, A has

rank one and pxA is infinite cyclic. If ^4 is a X-elementary balanced projective, then

A /pxA is totally projective. Every S-group can be realized as the torsion subgroup

of a direct sum of a totally projective group and X-elementary balanced projectives

for various limit ordinals X not cofinal with « (for details, see [11]).

Lemma 3. Let A be an S-group. Then there is a lncwo subgroup X of c(A) such that

[X: c(A)]/X is totally projective.

Proof. Let A be the torsion subgroup of T © TV where T is totally projective

and N = © Nx, with each Nx a direct sum of X-elementary balanced projectives, X

ranging over limit ordinals not cofinal with «. Since c(T) has only trivial lncwo

subgroups, we may assume T = 0. Let Sx be the torsion subgroup of 7VX and set

B = ©Ä^SÄ. Then pxc(Sx) = pxc(Nx) = c(pxNx). Since B/pxB is a direct sum of

groups of length less than X, it follows from [6, Lemma 3.10] th&tpxc(B/pxB) = 0

and so pxc(B) = c(pxB). Thus pxc(A) = pxc(B) © pxc(Sx) = c(pxB) © c(pxNx) =

c(pxA) © c(pxNx). Hence X = © c(pxNx), where the sum is over X, is a lncwo

subgroup of c(A). Noting that c(A) = c(N), and applying §2(A) and §2(B), we

have

[X: c(A)]/X=* ®(c(Nx)/pxNx), = ®(Nx/pxNx).

The latter group is totally projective by definition.   □

We have now characterized S-groups as those /»-groups A for which c(A)

contains a lncwo subgroup X with [X: c(A)]/X totally projective. The characteriza-

tion is obviously not canonical. However we can show that if A is an S-group, all

lncwo subgroups of c(A) are equivalent for our purposes.

Lemma 4. Let A be an S-group and let X and Y be lncwo subgroups of c(A). Then

there is an automorphism of c(A) which takes X onto Y. In particular, [X: c(A)]/X

^[Y:c(A)]/Y.

Proof. By Lemma 3 we can choose Y so that [Y: c(A)]/Y is totally projective.

Let { v,} be a basis for a/»-basic subgroup FjJ of Yx. Then in the decomposition

pxc(A) = c(pxA) © Xx = c(pxA) © Yx we have y¡ = s¡ + x¡ with s¡ G c(pxA) and

x¡ G Xx, and {x¡} is a basis for a subgroup X{* of Xx. Since c(pxA)/pxA is torsion

free divisible, for each / there is t¡ G pxA such that s¡ = s¡ — t¡ G px+ïc(A). The

group Cx generated by {c, = x¡ + /,} is a free valuated su," group of c(A) isomor-

phic to X^. Let C = © Cx and Y* = © F¿. There is a valuated xaappY* -> D =

<{j/}) defined by py¡ -» s'¡ (this is because we have arranged that vs'¡ > vy¡). Since

G = [Y*: c(A)] is balanced projective,pG is balanced projective. AspY* is nice in

pG and pG/pY* is totally projective, we may lift the map pY* —» D to a map e:

pG -» c(A). Let <i> = ep: G -» c(A). The cotorsion hull of G is c(A) and G/A is

torsion free divisible, so <j> can be considered an endomorphism of c(A). Let

\p = lc(A) — $. Then ip is an automorphism of c(A) which carries Y* onto C. It
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follows that [C: c(A)]/C sx [Y*: c(A)]/Y*. By §2(B) we have [Y*: c(A)\/Y* a*

[Y: c(A)]/Y, so 77 = [C: c(A)] is balanced projective. Let X* = © X¿. The proof

is complete on showing that the isomorphism C —> X* lifts to an automorphism of

c(A). Now 77 = [C: c(A)] = [X*: c(A)] by the definition of C, both C and X* are

nice in 77, and fH = fHC = /#_*«. By [3, Lemma 39], 77/A"* is totally projective.

Now [9, Theorem 2.8] shows that the valuated isomorphism C -» X* lifts to an

automorphism of 77, and hence to an automorphism of c(A). □

Summing up the results of Lemmas 2, 3 and 4, we have:

Theorem 5. Let A be a reduced torsion group. Then A is an S-group if and only if

[X: c(A)]/X is totally projective for each choice of lncwo subgroup X of c(A). In this

case, [X: c(A)]/X is the (unique up to isomorphism) totally projective group with the

same Ulm invariants as A.    n

4. Properties of S-groups. The isomorphism theorem is now easy to obtain.

Theorem 6. Two S-groups A and B are isomorphic if and only if for each ordinal a

we have fA(a) = fB(a) and, for each limit ordinal X not cofinal with w, we have

k(\, A) = k(\, B).

Proof. Let X and Y be lncwo subgroups of c(A) and c(B), respectively. Then the

equality of ^-invariants implies that X and Y are isomorphic as valuated groups.

Now X is nice in [X: c(A)] while the Ulm invariants of [X: c(A)] relative to X are

just the Ulm invariants of [X: c(A)] and hence of A. The same remarks apply to Y

and c(B). By [9, Theorem 2.8], [X: c(A)] and [ Y: c(B)] are isomorphic, from which

it follows that A and B are isomorphic.   □

Theorem 7. Each summand of an S-group is an S-group.

Proof. Let A = B © C be an S-group. Let X and Y be lncwo subgroups of c(B)

and c(C), respectively. Since c(A) = c(B) © c(C), it follows that X © Y = Z is a

lncwo subgroup of c(A). Now [Z: c(A)] = [X: c(B)] © [Y: c(C)] and by Theorem

5, [Z: c(A)]/Z is totally projective, so [X: c(B)]/X and [ Y: c(C)]/ Y are totally

projective. Lemma 2 shows that B and C are S-groups.   □

5. Torsion subgroups of Warfield groups. We now show that the torsion subgroup

of an arbitrary Warfield group is an S-group. Theorem 7 provides a straightfor-

ward reduction to the rank one case. From here the plan is to construct a Warfield

group of rank one with an appropriate torsion subgroup and then apply the

isomorphism theorem for Warfield groups. First some definitions.

The value sequence VGa (or just Va if the context is clear) of an element a of a

valuated group G is the sequence va, vpa, vp2a, ■ • ■ . A value sequence a is a

sequence etc < ax < a2 < . . . of ordinals and symbols oo. By p"a we mean the

value sequence «„, «n+i> • • • • Value sequences a and ß are equivalent if there are

natural numbers m and n such that/»ma = p"ß. If a is an ordinal or symbol oo, we

identify a with the value sequence a, a + 1, a + 2,. . . . Value sequences of finite

order elements will be considered finite in the obvious way.
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Although [2, Theorem 5.21] states that the torsion subgroup of a rank one

Warfield group is an S-group, the proof relies on [1, Theorem 103.3] which is

incorrect. To see this, let T be a totally projective group of length to, + co. Then T

and the value sequence w, satisfy conditions (i)-(iv) of [1, pp. 200-201], so

[1, Theorem 103.3] claims the existence of a rank one group G with G, = T such

that G contains an element with value sequence «,. But G is Warfield and the

torsion subgroup of a rank one Warfield group which contains an element with

value sequence co, is not totally projective, a contradiction to the choice of T.

Theorem 8 is our replacement for [1, Theorem 103.3]. The error which leads to the

preceding counterexample lies in part (c), [1, p. 202]. The proof of part (d) on the

same page also seems to be incorrect. For example, if the value sequence in

question is 0, 2, 4, 6, . . . then the sequence of x/s which Fuchs requires cannot be

obtained. Koyama [4] also provides corrections to [1, Theorem 103.3]. The follow-

ing provides a considerable simplification of both the theorem statement and proof.

Theorem 8. Let C = <jc> be a valuated cyclic group of infinite order and let T be

a reduced torsion group. Then there is a rank one group G with G, = T and

containing C as a valuated subgroup if and only if:

(a)/r>/c;

(b) // Vx is equivalent to an ordinal ß > to then

p»c{T/p*T) + &

Proof. Let Vx = a = a0, a,, . . . . For necessity, the only difficulty is when a is

equivalent to an ordinal > u. In this case we may assume that a is an ordinal.

Under the natural embedding of G as a valuated subgroup of c(T) we have

x G pac(T). Write p"c(T) = c(paT) © X. Since c(paT)/paT is divisible, no ele-

ment of infinite order in c(p"T) has value sequence equivalent to a. Thus

X ^ pac(T/paT) is not zero.

Now for the proof of sufficiency. Let 7 = {/': a, + 1 < a1 + ,}. If a contains oo, it

suffices to take G = T © Q. When a does not contain oo, we distinguish two cases.

Case 1 : I is finite. We may as well assume that 7 is empty. Suppose Vx is

equivalent to the ordinal ß. If ß < u, we may assume ß = 0 and set G = T © Zp.

If ß > u, condition (b) ensures that pßc(T) = c(pßT) © Xß with Xß =¿

pßc(T/pßT) ¥= 0. Let y be an element of Xp with value ß and let G = [< v>: c(T)].

Since c(T)/G is torsion free, G is isotype in c(T) and so V(¡y = ß. Clearly G, = T

and G contains an element with value sequence a.

Case 2: I is infinite. Let X = sup a,. Condition (a) ensures there is a sequence of

x,'s in T so that Vx, = olq, . . . , a, and it is straightforward to further arrange that

lim,^^, v(xi+1 — x,) = X. As X is cofinal with u, [5, Theorem 3.4] shows that

c(T)/pxc(T) is complete in the //-topology. Then x = lim x, has value sequence a

in c(T)/pxc(T) and so lifts to an element v of value sequence a in c(T). Setting

G = [< v>: c(T)] completes the proof.   □

Theorem 9. The torsion subgroup of a Warfield group is an S-group.
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Proof. Let W be the Warfield group in question. By [3, Lemma 15], there is a

totally projective /»-group P such that W © P is a direct sum of groups with torsion

free rank one. By Theorem 7, we may assume that W has torsion free rank one. If

W is balanced projective, there is nothing to prove. If not, the number of jumps in

the value sequence of an element a of infinite order in W is infinite. Let T be the

totally projective /»-group with the same Ulm invariants as W. By Theorem 8 there

is a rank one Warfield group A with torsion part T and containing an element with

value sequence the same as the value sequence of a. The isomorphism theorem for

Warfield groups [3, Theorem 10] shows that A and W are isomorphic. Thus W, is

totally projective.    □
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