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ON THE COLLATZ 3n + 1 ALGORITHM

Lynn E. garner

Abstract. The number theoretic function i(n) = i n if n is even, j(/i) — 3n + 1 if n

is odd, generates for each n a Collate sequence {j*(i)}"_o. s°(") ™ "> •»*(«) ™

5(j*_'("))• It is shown that if a Collate sequence enters a cycle other than the 4, 2,

1, 4,... cycle, then the cycle must have many thousands of terms.

1. Introduction. The Collatz 3/1+1 algorithm is defined as a function s: N —* N

on the set of positive integers by

, n _ Í n/2 if n is even,

*W      13/2+1     if n is odd.

Let i0(n) = n and J*(n) = s(sk~ '(/»)) for k G N. The Collatz sequence for « is

C(») = {5*(n)}r.o.

For example, C(17) = {17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, . . . }.

The original problem of Collatz concerns the existence of cycles in Collatz

sequences. It is conjectured that every Collatz sequence ends in the cycle

4, 2, 1, 4, .... So many people have worked on this problem in the nearly fifty

years of its existence that it is almost part of mathematical folklore. Martin

Gardner reports [2] that the conjecture has been verified for all n < 60,000,000;

Riho Terras says that the conjecture has been verified for all n < 2,000,000,000.

The only published results to date [1], [3] are probabilistic in nature, and tend to

strengthen belief in the conjecture.

This paper proves that there are no other "short" cycles: if a cycle exists which

does not contain 1, then it has many thousands of terms.

2. Stopping time. Collatz's conjecture is equivalent to the conjecture that for each

n G N, n > 1, there exists k & N such that sk(n) < n. The least k e N such that

sk(n) < n is called the stopping time of n, which we will denote by a(/i).

It is not hard to verify that

o(n) = 1 if « is even,

a(n) = 3 if n = 1 (mod 4),

a(n) = 6 if n = 3 (mod 16),

o(n) = 8 if n = 11 or 23 (mod 32),

a(n) = 11 if n = 7, 15, or 59 (mod 128),

o{n) = 13 if n = 39, 79, 95, 123, 175, 199, or 219 (mod 256),

and so forth. Everett [1] proves that almost all n e N have finite stopping time, and

Terras [3] gives a probability distribution function for stopping times. Most positive
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integers have small stopping times; the above list accounts for 237/256 « 93% of

them. However, stopping times can be arbitrarily large, for o(2" — 1) > 2n. Some

interesting cases of larger stopping times are o(27) = 96, o(703) = 132, o(35,655) =

220, a(270,271) = 311, and ct(1,027,341) = 347. In a computation of stopping times

of integers up to 1,065,000, the largest observed stopping time was 347.

3. A term formula. Let Ck(n) consist of the first k terms of the Collatz sequence

for n. Let m (which depends on n and k) be the number of odd terms in Ck(n), and

let d¡ be the number of consecutive even terms immediately following the ith odd

term. Let d0 be the number of even terms preceding the first odd term. Then the

next term in the Collatz sequence for n is

im                  m           off! — i

**(„) »_£_„+   ¿  -t^- (1)
2k~m       ,_i 2*+1 ■*<•

Note that k - m = d0 + dx + • • • + dm.

4. Coefficient stopping time. By the coefficient of sk(n) is meant the coefficient of

n in (1), namely 3m/2*~m. The coefficient stopping time of n is the least k G N such

that the coefficient of sk(n) is less than 1, and is denoted by k(/i). Thus k(/j) is the

least k such that 3m <2k~m.

It is clear that if sk(n) < n, then the coefficient of sk(n) is less than 1; thus

k(/i) < o(n) for all n £ N, n > 1. We conjecture that k(/i) = a(n), and have

verified it for all n < 1,150,000.

For m = 0 or m Ë JV, letp(w) = [m log2 3]; then 2pim) < 3m < 21+p(m). Thus if

ic(n) = k, then k — m = 1 + p(m), or k = m + 1 + p(m). These, then, are the

possible coefficent stopping times.

We can also identify those n e N with a given coefficient stopping time. Clearly,

k(/i) = 1 if and only if n is even. If k = m + 1 + p(m) > 1 is a possible coefficient

stopping time, let d0 = 0 and dx, d2, . . ., dm e N be such that </, + ••• + d¡; <

/>(/) for / = 1, 2, . . . , m — 1, and </, + ••• + ¿m = p(/w) + 1. Let x and v be

integers such that 3mx + 2x+pim)y = 1. Then k(«) = A: if and only if

" = -*( 2 3m-'2',''+  ■ ■ +4-' J        (mod 21+p(m)).

We are able to prove that k(/i) = o(n) under certain bound conditions which

arise from a study of the powers of 2 and the powers of 3.

5. Powers of 2 and 3. The behavior of a Collatz sequence is clearly related to the

way in which the powers of 2 are distributed among the powers of 3. We were

surprised to find that the powers of 2 appear to be bounded away from the powers

of 3 by an amount which grows almost as rapidly as the power of 3.

To be specific, we choose M e N, and let

b{M)= max{-log3(l - 2P<J)3-J))
j KM

and

B{M) = max{-log3(2l+i'(')3-> - 1)).
j<M l J
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Then it follows that

and

2/,(m) >  yn-b(M)
(2)

2'+/>("■) - 3m > y»-*r*0 (3)

for all m < M. The values of M at which ¿>(M) and B(M) increase are given in

Table 1, with the corresponding values of b and B. (These calculations were carried

out on a Hewlett-Packard HP-19C programmable calculator.)

M b(M) B(M)

1

2

3

5

7

12

17

29

41

53

94

147

200

253

2.508

3.921

5.618

1

1.535

2.665

2.946

3.346

4.062

4.246

4.477

4.785

5.253

M   b(M)   B(M)

306

359  6.23

665  9.14

971

1636

2301

2966

3631

4296

4961

5626

6291

6956

7621

6.267

6.31

6.35

6.39

6.44

6.49

6.53

6.59

6.65

6.71

6.77

6.8

M   b(M)  B(M)

8286

8951

9616

10281

10946

11611

12276

12941

13606

14271

14936

15601

16266      9.4

31867      9.9

6.9

7.0

7.1

7.2

7.3

7.4

7.6

7.8

8.0

8.4

8.9

10.2

Table 1.  Values at which b(M) and B(M) increase

6. The main theorem. Now we can prove that k(m) = o(n) if the number of odd

terms encountered in the Collatz sequence is not too great. The following theorem

makes the bound condition precise.

Theorem. In the notation of (I), if k(/z) = k and

m < min{M, (/i/2)3,-S(M)(l - S^^y1},

then o(n) = k(/i).

Proof. If k(/i) = k, then 3m/2*~m < 1 and

yn-i

24H
<-:-< =— < 4(1 - 3-*">)

3' 3' 3V
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by (2). Thus

2 ■*

Now if sk(n) > n, then n < (3m/2k'm)n + (m/3)(l - 3-*"*), and therefore

«<4'«(l-3-é<AÍ>)^r-31'<*í>
3 3

by (3). This leads by the hypothesis to n < n, a contradiction. Hence sk(n) < n,

and er(/i) < k. But k(«) < o(n), so a(/i) = k(/j).

It is conjectured that the bound condition in the theorem is unnecessary, or is

automatically satisfied so that o(ri) = k(/i) in all cases.

7. Application to cycles. Suppose a Collatz sequence enters a cycle which does not

contain 1. Let n be the least term of the cycle; then sk(n) = n for some k E. N.

Hence k(h) < k, so that if o{h) = k(/i), then n is not the least term of the cycle after

all. Thus if stopping time and coefficient stopping time are always the same, then

the only cycle is the 4, 2, 1, . . . cycle.

The same contradiction arises if the number of odd terms in the cycle satisfies

the bound in the theorem. Thus if there is a cycle not containing 1, the number m

of odd terms in the cycle must satisfy m > min{M, (n/2)3,_B(M)(l - 3~b(M))-x},

where n is the least term of the cycle.

Using n > 60,000,000, M = 14,000, B(M) = 8.0, and b(M) = 9.14, we find

m > 13,700, and hence k > 35,400. Thus any cycle not containing 1 must have at

least 35,400 terms.

If the number 2 billion turns out to be the lower bound for n, as alleged, then

M = 41,000, B(M) = 10.2, and b(M) = 9.9 yield m > 40,700 and k > 105,000.

In any event, there is only one "short" cycle, the known one.
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