A RING WITH ARITHMETICAL CONGRUENCE LATTICE NOT PRESERVED BY ANY PIXLEY FUNCTION

IVAN KOREC

ABSTRACT. A ring $(A; +, \cdot)$ is constructed such that the congruence lattice L_A of the ring $(A; +, \cdot)$ is distributive, the elements of L_A are pairwise permutable and there is no L_A -compatible function p on A such that

$$p(a, b, b) = p(a, b, a) = p(b, b, a) = a$$
 for all $a, b \in A$. (1)

1. Introduction and notation. Let Eq(A) denote the lattice of all equivalence relations on a set A. A sublattice L of Eq(A) is said to be arithmetical if L is distributive and the elements of L are pairwise permutable. For arbitrary $\mathfrak{D} \in \text{Eq}(A)$ and $(a_1, \ldots, a_k), (b_1, \ldots, b_k) \in A^k$ we write

$$(a_1,\ldots,a_k)\mathfrak{D}(b_1,\ldots,b_k) \tag{1.1}$$

if $a_1 \mathfrak{D} b_1 \wedge \cdots \wedge a_k \mathfrak{D} b_k$. A mapping f of [a subset of] A^k into A is said to be a k-ary \mathfrak{D} -compatible [partial] function if (1.1) implies

$$f(a_1,\ldots,a_k)\mathfrak{D}f(b_1,\ldots,b_k) \tag{1.2}$$

for all (a_1, \ldots, a_k) , $(b_1, \ldots, b_k) \in \text{Dom}(f)$. For $L \subseteq \text{Eq}(A)$, f is said to be L-compatible if it is \mathfrak{D} -compatible for every $\mathfrak{D} \in L$. A ternary function p on the set A is said to be a Pixley function if

$$p(a, b, b) = p(a, b, a) = p(b, b, a) = a$$
 for all $a, b \in A$. (1.3)

Let an arithmetical lattice $L \subseteq \text{Eq}(A)$ be the congruence lattice of an algebra over A. It was proved in [9] that if L is finite then there is an L-compatible Pixley function. At the Colloquium on Universal Algebra in Oberwolfach, July, 1973, A. F. Pixley asked whether the finiteness of L can be omitted in the mentioned theorem. Partial positive answers are contained in [7] and [8]; e.g. the finiteness of L can be replaced by the countability of A. In the present paper it is shown that the finiteness of L cannot be completely omitted.

A related problem is solved in [3] where congruence equalities are defined; for example, arithmeticity corresponds to the congruence equality $(\xi \eta) \cap (\zeta \xi) = \xi(\eta \cap \zeta)$. Further, local Mal'cev characterisability is introduced, and it is proved that arithmeticity is the only nontrivial congruence equality which is locally Mal'cev characterisable.

Received by the editors May 29, 1980; presented at the Summer School of Universal Algebra and Ordered Sets, September 1-10, 1980, Kroměříž, Czechoslovakia.

AMS (MOS) subject classifications (1970). Primary 08A25, Secondary 08A05.

24 IVAN KOREC

 L_Z denotes the congruence lattice of the ring $(Z, +, \cdot)$ of integers and ω the set of nonnegative integers. The symbol

$$\binom{n}{i} = \frac{n(n-1)\cdot\cdot\cdot(n-i+1)}{i!} \tag{1.4}$$

is defined for all $n \in Z$ and $i \in \omega$. The (nonnegative) least common multiple of integers a_1, \ldots, a_n is denoted l.c.m. (a_1, \ldots, a_n) . Square brackets are used for the integer part. Sequences of integers (i.e. mappings of ω into Z) are denoted $x, y, z, u, v, t \ldots$. The *n*th member of the sequence x is denoted x_n ; every sequence begins with the 0th member. Hence $x = (x_0, x_1, x_2, \ldots)$, and analogously for other letters. The formula

$$x \equiv y \pmod{t} \tag{1.5}$$

means $x_n \equiv y_n \pmod{|t_n|}$ for all $n \in \omega$; $a \equiv b \pmod{0}$ means a = b; and $a \equiv b \pmod{1}$ holds for arbitrary integers a, b. We also generalize (1.5) for k-tuples of sequences similarly to (1.1).

- 2. Lower bound for L_z -compatible Pixley functions. We shall need some results from [4], which are summarized in the next theorem.
- 2.1. THEOREM. Let f be a mapping of ω into Z. Then f can be uniquely represented in the form

$$f(k) = \sum_{i=0}^{\infty} A_i \binom{k}{i}. \tag{2.1.1}$$

The numbers A_i are integers and for every $n \in \omega$

$$A_n = \sum_{i=0}^{n} (-1)^i \binom{n}{i} f(n-i).$$
 (2.1.2)

Further, f is L_Z -compatible if and only if for every $n \in \omega$ the number A_n is a multiple of l.c.m. $(1, 2, \ldots, n)$.

The formula (2.1.2) can be proved from (2.1.1) and also by [6, formula 34, p. 438].

The paper [4] also contains a lower bound for so-called genuine pseudopolynomials. There are several reasons why the bound from [4] cannot be immediately used here; the most substantial one is that the bound in [4] is not uniform. We shall find a uniform exponential lower bound for L_Z -compatible Pixley functions; however, we shall not look for the best numerical result. To formulate our result briefly we define

2.2. Definition. Let $M_0 = 0$, $M_1 = 1$ and for all $n \in \omega$, n > 2 let

$$M_n = [1.c.m. (1, 2, ..., k)/2^k]$$
 (2.2.1)

where k is the greatest prime not greater than n.

By [4] or [1] the sequence $(M_0, M_1, M_2, ...)$ increases exponentially. More precisely,

$$\lim_{n \to \infty} \log(2^n \cdot M_n) / \log(e^n) = 1$$
 (2.2.2)

where e = 2.71828...

2.3. Theorem. For every L_z -compatible Pixley function p and every $n \in \omega$

$$\max\{|p(a,b,c)|; a,b,c \in \{-n,-n+1,\ldots,n-1,n\}\} > M_n. \quad (2.3.1)$$

PROOF. For $n \le 1$ we have $|p(n, n, n)| = |n| = n = M_n$, hence (2.3.1) holds. Now assume n > 1; without loss of generality we may assume that n is a prime. Denote

$$f(k) = p(k, k - n, 0). (2.3.2)$$

It obviously suffices to show

$$\max\{|f(k)|; k \in \{0, 1, \dots, n\}\} > M_n. \tag{2.3.3}$$

The partial function f is L_Z -compatible and hence for every $k \in \omega$ we have $f(k) = p(k, k - n, 0) \equiv p(k, k, 0) = 0 \pmod{n}$. Further, f(0) = p(0, -n, 0) = 0, f(n) = p(n, 0, 0) = n. There are integers A_i such that (2.1.1) holds for all $k \in \omega$; then (2.1.2) holds, too. For every $i \in \{1, 2, \ldots, n - 1\}$ the prime n divides both $\binom{n}{i}$, f(n - i) and hence

$$\binom{n}{i}f(n-i)\equiv 0\pmod{n^2}.$$

Therefore

$$A_n \equiv f(n) + (-1)^n f(0) = n \pmod{n^2}$$
.

Hence $A_n \neq 0$. On the other hand, (2.1.2) implies

$$|A_n| \le \sum_{i=0}^n {n \choose i} f(n-i) \le 2^n \max\{|f(k)|; k \in \{0, 1, ..., n\}\}.$$

If (2.3.3) does not hold then we have

$$0 \neq |A_n| < |2^n \cdot M_n| \leq 1.\text{c.m.} (1, 2, \dots, n).$$

Therefore A_n is not a multiple of l.c.m. $(1, 2, \ldots, k)$ which contradicts the L_z -compatibility of f.

- 3. The example. A sequence of integers (x_0, x_1, x_2, \dots) is said to be polynomially bounded if there is $k \in \omega$ such that $|x_n| < (n+2)^k$ for all $n \in \omega$. The memberwise product and the memberwise difference of two polynomially bounded sequences of integers are polynomially bounded. Therefore the set of polynomially bounded sequences forms a ring with these operations. This ring will be called the ring of polynomially bounded sequences.
- 3.1. THEOREM. Let L_A be the congruence lattice of the ring $(A; +, \cdot)$ of polynomially bounded sequences. Then L_A is arithmetical and there is no L_A -compatible Pixley function.

The proof will be divided into several lemmas. Throughout the whole present section A and L_A will always have the meaning from Theorem 3.1.

3.2. Lemma. L_A is arithmetical.

PROOF. The elements of L_A are obviously pairwise permutable; it remains to prove that L_A is distributive.

26 IVAN KOREC

Let $\xi, \eta, \zeta \in L_A$, $x, y, z \in A$ and $x \xi y, x \eta z \zeta y$. We have to find $u \in A$ such that

$$x(\xi \cap \eta)u(\xi \cap \zeta)y. \tag{3.2.1}$$

For every $n \in \omega$ consider the system of congruences

$$u_n \equiv x_n \pmod{|x_n - y_n|},$$

$$u_n \equiv x_n \pmod{|x_n - z_n|},$$

$$u_n \equiv y_n \pmod{|y_n - z_n|},$$
(3.2.2)

with the unknown u_n . Every pair of congruences (3.2.2) is solvable. Hence by the Chinese remainder theorem the system (3.2.2) is solvable. Moreover, if the integers x_n, y_n, z_n are pairwise different we can arrange

$$|u_n| \leq |(x_n - y_n) \cdot (x_n - z_n) \cdot (y_n - z_n)|;$$

otherwise u_n will be the repeated integer from x_n, y_n, z_n . Then the sequence $u = (u_0, u_1 u_2, \dots)$ is polynomially bounded and hence $u \in A$. Since (3.2.2) holds for all $n \in \omega$ we have $u \xi x, u \eta x, u \zeta y$ which together with $x \xi y$ implies (3.2.1). Q.E.D.

The next lemma obviously holds for any k-ary L_A -compatible function; since we need it only for k = 3 we formulate it only for this case to avoid more complicated notation.

3.3. LEMMA. For every ternary L_A -compatible function p there is a unique sequence (p_0, p_1, p_2, \dots) of ternary L_7 -compatible functions such that

$$p((x_0, x_1, x_2, \dots), (y_0, y_1, y_2, \dots), (z_0, z_1, z_2, \dots))$$

$$= (p_0(x_0, y_0, z_0), p_1(x_1, y_1, z_1), p_2(x_2, y_2, z_2), \dots) \quad (3.3.1)$$

for all $(x_0, x_1, x_2, \dots), (y_0, y_1, y_2, \dots), (z_0, z_1, z_2, \dots) \in A$.

PROOF. For every $n \in \omega$ denote by \mathfrak{D}_n the least element of L_A such that

$$(1,\ldots,1,0,1,1,\ldots)\mathfrak{D}_n(0,0,0,\ldots)$$
 (3.3.2)

where 0 on the left-hand side is at the *n*th place. Since the function p is \mathfrak{D}_n -compatible the *n*th member of p(x,y,z) depends only on the *n*th members x_n, y_n, z_n of x, y, z, respectively. Therefore there are ternary functions p_0, p_1, p_2, \ldots such that (3.3.1) holds; the uniqueness is obvious. It remains to prove that the functions p_0, p_1, p_2, \ldots are L_Z -compatible. Let $a_1, a_2, a_3, b_1, b_2, b_3 \in Z$, $n, d \in \omega$ and $(a_1, a_2, a_3) \equiv (b_1, b_2, b_3)$ (mod d). Let the *n*th members of the sequences x, y, z, u, v, w, t be $a_1, a_2, a_3, b_1, b_2, b_3, d$, respectively, and let all the remaining members of these sequences be zero. Then

$$(x, y, z) \equiv (u, v, w) \pmod{t}$$

and since p is L_A -compatible

$$p(x, y, z) \equiv p(u, v, w) \pmod{t}$$
.

Therefore by (3.3.1)

$$p_n(x_n, y_n, z_n) \equiv p_n(u_n, v_n, w_n) \pmod{t_n}$$

i.e.

$$p_n(a_1, a_2, a_3) \equiv p_n(b_1, b_2, b_3) \pmod{d}$$
.

Q.E.D.

3.4. Lemma. There is no L_A -compatible Pixley function.

PROOF. Let p be such a function. By Lemma 3.3 there are L_Z -compatible functions p_0, p_1, p_2, \ldots such that (3.3.1) holds; p_0, p_1, p_2, \ldots are obviously Pixley functions. Hence for every $n \in \omega$ there are integers $x_n, y_n, z_n \in \{-n, -n + 1, \ldots, n - 1, n\}$ such that

$$|p_n(x_n, y_n, z_n)| \ge M_n.$$

The sequences $x=(x_0,x_1,x_2,\ldots)$, $y=(y_0,y_1,y_2,\ldots)$, $z=(z_0,z_1,z_2,\ldots)$ belong to A, hence $t=(t_0,t_1,t_2,\ldots)=p(x,y,z)$ also belongs to A. However, for every $n\in\omega$, $|t_n|=|p_n(x_n,y_n,z_n)|>M_n$. Hence t is not polynomially bounded, which contradicts $t\in A$.

REFERENCES

- 1. K. Chandrasekharan, Arithmetical functions, Russian transl., "Nauka", Moscow, 1975.
- 2. G. Grätzer, Universal algebra, Van Nostrand, Princeton, N.J., 1968.
- 3. H. P. Gumm, Is there a Mal'cev theory for single algebras?, Algebra Universalis 8 (1978), 320-329.
- 4. R. R. Hall, On pseudopolynomials, Mathematika 18 (1971), 71-77.
- 5. B. Jonsson, *Topics in universal algebra*, Lecture Notes in Math., vol. 250, Springer-Verlag, Berlin and New York, 1970.
 - 6. J. Kaucký, Combinatorial identities, Veda, Bratislava, 1975.
- 7. I. Korec, A ternary function for distributivity and permutability of an equivalence lattice, Proc. Amer. Math. Soc. 69 (1978), 8-10.
 - 8. _____, Concrete representation of some equivalence lattices, Math. Slovaca (to appear).
 - 9. A. F. Pixley, Completeness in arithmetical algebras, Algebra Universalis 2 (1972), 179-196.
- 10. _____, Distributivity and permutability of congruence relations in equational classes of algebras, Proc. Amer. Math. Soc. 14 (1963), 105-109.
 - 11. _____, Local Mal'cev conditions, Canad. Math. Bull. 15 (1972), 559-568.

DEPARTMENT OF ALGEBRA, FACULTY OF MATHEMATICS AND PHYSICS, UNIVERSITY OF COMENIUS, 81631 BRATISLAVA, CZECHOSLOVAKIA