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A RING WITH ARITHMETICAL CONGRUENCE LATTICE

NOT PRESERVED BY ANY PEXLEY FUNCTION

IVAN KOREC

Abstract. A ring (A; +, •) is constructed such that the congruence lattice LA of

the ring {A; +, •) is distributive, the elements of LA are pairwise permutable and

there is no LA -compatible function p on A such that

p(a,b,b) = p(a,b,a) = p(b, b, a) = a    for all a, b G A. (1)

1. Introduction and notation. Let EqL4) denote the lattice of all equivalence

relations on a set A. A sublattice L of EqL4) is said to be arithmetical if L is

distributive and the elements of L are pairwise permutable. For arbitrary % G

Eq(A) and (a,, . . ., ak), (¿>„ . . ., bk) E. A k we write

(a„ . .., afc)®(¿>„ . . . , bk) (1.1)

if a,®è, A ' • ' Aok^bk. A mapping/ of [a subset of] Ak into A is said to be a

A>ary ©-compatible [partial] function if (1.1) implies

/(«„ . .. , aJW,, . . ., bk) (1.2)

for all (a,, . . . , ak), (bu . . ., bk) G Dom(/). For L Q Eq(y4), / is said to be

L-compatible if it is ©-compatible for every ÎGI.A ternary function/» on the set

A is said to be a Pixley function if

p(a, b, b) = p(a, b, a) = p(b, b,a) = a   for all a, b G A. (1.3)

Let an arithmetical lattice L Q Eq(^4) be the congruence lattice of an algebra

over A. It was proved in [9] that if L is finite then there is an L-compatible Pixley

function. At the Colloquium on Universal Algebra in Oberwolf ach, July, 1973,

A. F. Pixley asked whether the finiteness of L can be omitted in the mentioned

theorem. Partial positive answers are contained in [7] and [8]; e.g. the finiteness of

L can be replaced by the countability of A. In the present paper it is shown that the

finiteness of L cannot be completely omitted.

A related problem is solved in [3] where congruence equalities are defined; for

example, arithmeticity corresponds to the congruence equality (| 17) n (SO —

K1) n f )• Further, local Mal'cev characterisability is introduced, and it is proved

that arithmeticity is the only nontrivial congruence equality which is locally

Mal'cev characterisable.
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Lz denotes the congruence lattice of the ring (Z, +, •) of integers and w the set

of nonnegative integers. The symbol

fn\      n(n - 1) ■ • • (n - i + 1) .    .

is defined for all n G Z and i G w. The (nonnegative) least common multiple of

integers ax, . . . ,an is denoted l.c.m.(a„ . . . , an). Square brackets are used for the

integer part. Sequences of integers (i.e. mappings of u into Z) are denoted x, y, z,

u, v, t . . . . The nth member of the sequence x is denoted xn; every sequence begins

with the Oth member. Hence x = (x0, x„ x2, ■ ■ ■ ), and analogously for other

letters. The formula

x = v   (mod t) (1.5)

means xn =yn (mod|/n|) for all n G w; a = b (mod 0) means a = b; and a = b

(mod 1) holds for arbitrary integers a, b. We also generalize (1.5) for A>tuples of

sequences similarly to (1.1).

2. Lower bound for Lz-compatible Pixley functions. We shall need some results

from [4], which are summarized in the next theorem.

2.1. Theorem. Let f be a mapping of u into Z. Then f can be uniquely represented

in the form

/(*) = S 4 H (2.1.1)
,=o    v''

The numbers A¡ are integers and for every n G w

A„ = 2 (-!)'( ")f(n - /). (2.1.2)
i = 0

Further, f is Lz-compatible if and only if for every n G w the number A„ is a multiple

o/l.c.m.(l, 2, . . ., ri).

The formula (2.1.2) can be proved from (2.1.1) and also by [6, formula 34, p.

438].

The paper [4] also contains a lower bound for so-called genuine pseudopoly-

nomials. There are several reasons why the bound from [4] cannot be immediately

used here; the most substantial one is that the bound in [4] is not uniform. We shall

find a uniform exponential lower bound for Lz-compatible Pixley functions;

however, we shall not look for the best numerical result. To formulate our result

briefly we define

2.2. Definition. Let M0 = 0, M, = 1 and for all n G u, n > 2 let

Mn=[lc.m.(l,2,...,k)/2k] (2.2.1)

where k is the greatest prime not greater than n.

By [4] or [1] the sequence (A/0, M„ M2, ■ ■ ■ ) increases exponentially. More

precisely,

lim   log(2" • Mn)/log(e") = 1 (2.2.2)
n—* oo

where e = 2.71828_
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2.3. Theorem. For every Lz-compatible Pixley function/» and every n G w

max{|/?(a, b, c)|; a, b, c G {-n, -n + 1, . . . , n — 1, «}} > M„.     (2.3.1)

Proof. For /i < 1 we have \p(n, n, n)\ = \n\ = n = Mn, hence (2.3.1) holds.

Now assume n > 1; without loss of generality we may assume that « is a prime.

Denote

f(k) = p(k, k- n, 0). (2.3.2)

It obviously suffices to show

max{|/(A:)|; k G {0, 1, ...,«}}> M„. (2.3.3)

The partial function / is Lz-compatible and hence for every k G u we have

/(£) = />(£, k - n, 0) =/>(*:, A:, 0) = 0 (mod «). Further, /(0) = p(0, -n, 0) = 0,

/(«) = />(«, 0, 0) = n. There are integers A¡ such that (2.1.1) holds for all k G <o;

then (2.1.2) holds, too. For every i G (1, 2, . . ., n - 1} the prime n divides both

(")' f(n ~ 0 and hence

0 = 0   (mod*2).

Therefore

/!„ = /(/,) + (-1)7(0) = n    (mod /j2).

Hence An ¥= 0. On the other hand, (2.1.2) implies

\An\ < 2 (*M* - 0 < 2"max{l/(*)|; * G {0, 1, ..., «}}.
/-ov   7

If (2.3.3) does not hold then we have

0 * 1^1 < |2" • A/„| < l.c.m. (1, 2, . . ., n).

Therefore An is not a multiple of l.c.m.(l, 2, . . . , k) which contradicts the ¿^com-

patibility of /.

3. The example. A sequence of integers (x0, jc„ x2, . . . ) is said to be polynomi-

al^ bounded if there is k G <o such that \xn\ < (n + 2)k for all /i G w. The

memberwise product and the memberwise difference of two polynomially bounded

sequences of integers are polynomially bounded. Therefore the set of polynomially

bounded sequences forms a ring with these operations. This ring will be called the

ring of polynomially bounded sequences.

3.1. Theorem. Let LA be the congruence lattice of the ring (A; +, •) of

polynomially bounded sequences. Then LA is arithmetical and there is no LA-compati-

ble Pixley function.

The proof will be divided into several lemmas. Throughout the whole present

section A and LA will always have the meaning from Theorem 3.1.

3.2. Lemma. La is arithmetical.

Proof. The elements of LA are obviously pairwise permutable; it remains to

prove that LA is distributive.
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Let £, tj, f G LA, x,y, z G A and xfy, xqzÇy. We have to find u G A such that

*<ï n r,)«(| n r>f. (3.2.1)

For every n G w consider the system of congruences

"„ = x„    (mod|x„ - v„|),

"„ = ■*„    (mod|x„ - z„|),

«„ = r„    (mod|yn - z„\), (3.2.2)

with the unknown un. Every pair of congruences (3.2.2) is solvable. Hence by the

Chinese remainder theorem the system (3.2.2) is solvable. Moreover, if the integers

xn, yn, zn are pairwise different we can arrange

l"J < \(xH - v„) • (x„ - zn) ■ (yn - zn)\;

otherwise un will be the repeated integer from xn,yn, zn. Then the sequence

m = (u0, m, u2, . . . ) is polynomially bounded and hence u G A. Since (3.2.2) holds

for all n G w we have u£x, ui]x, u$y which together with x$y implies (3.2.1).

Q.E.D.
The next lemma obviously holds for any k-ary LA -compatible function; since we

need it only for k = 3 we formulate it only for this case to avoid more complicated

notation.

3.3. Lemma. For every ternary LA-compatible function p there is a unique sequence

(Po'Pi'Pi' • • • ) of ternary Lz-compatible functions such that

p((Xo, xv x2,... ), (y0,yi,y2,.. . ), (z„, z„ z2,. .. ))

= (Po(x»y» zo)>Pi(xi>y\> 'i)>pA**y»*s). • • ■ ) (3.3.1)

for all (x0, xt, x2, . . . ), (y0,yl,y2,. . . ), (z„, z,, z2, . . . ) G ^4.

Proof. For every n G u denote by SD„ the least element of LA such that

(1, ...,1,0, 1, 1,. . . )®„(0, 0, 0, ...) (3.3.2)

where 0 on the left-hand side is at the /ith place. Since the function p is

©„-compatible the nth member of p(x, y, z) depends only on the nth members

x„,y„, zn of x,y, z, respectively. Therefore there are ternary functionsPo,px,p2, ■ ■ ■

such that (3.3.1) holds; the uniqueness is obvious. It remains to prove that the

functions p0,pup2, . . . are Lz-compatible. Let a„ a2, a3, bx, b2, b3 G Z, », d G w

and (a„ a2, a3) = (6„ b2, Z>3) (mod d). Let the nth members of the sequences x, y,

z, u, v, w, t be a,, a2, a3, bv b2, b3, d, respectively, and let all the remaining

members of these sequences be zero. Then

(x,y, z) = (m, v, w)   (modi)

and since p is LA -compatible

p(x, y, z) =p(u, v, w)    (modi).

Therefore by (3.3.1)

/>„(*„> y*> Zn) =PÁUn> ü„> Wn)      (mod Ü
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i.e.

p„(alt a2, a3) =pn(bx, b2, b3)   (mod d).

3.4. Lemma. There is no LA-compatible Pixley function.

Proof. Let p be such a function. By Lemma 3.3 there are Lz-compatible

functions p0,Pi,p2, ■ ■ ■ such that (3.3.1) holds; p<y,px,p2, ... are obviously Pixley

functions. Hence for every nGw there are integers xn, yn, zn G {-n, -n +

1, . . . , n — 1, n} such that

\P.(Xn>y#z*}\ > Mn-

The sequences x = (x0, x„ x2, . ..), y = (y0,yl,y2, . . .), z =(z0, z„ z2, ...) be-

long to A, hence / = (f0, tu t2, . . . ) = p(x,y, z) also belongs to A. However, for

every n G w, \tn\ = \p„(xn,yn, zn)\ > Mn. Hence / is not polynomially bounded,

which contradicts / G A.
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