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DECOMPOSING OVERRINGS

B. CORTZEN, L. W. SMALL AND J. T. STAFFORD

Abstract. We show that if S D R are rings such that SR is projective, then RR is a

direct summand of SR if and only if SR is faithfully projective (this condition holds,

in particular, if SR is free).

1. Introduction. A common problem in homological algebra is to relate the global

dimension of a subring R of a ring S to the global dimension of S. Typically, S will

be projective as an /?-module, but frequently it is also required that R be a direct

summand of S (see for example [2], [3]). This note shows that the second require-

ment is ensured by a fairly weak condition, which is also trivially necessary. In

particular, the condition holds whenever S is free as an Ä-module. In the special

case when R is commutative and SR is finitely generated, the result has been

noticed by Bourbaki [1, Ex. 5.4, p. 176].

All modules are right modules, unless otherwise stated. All rings will contain an

identity, and this identity will be preserved when passing to subrings. Let R be a

ring, and P a right Ä-module. P is said to be faithfully projective over R, if P is

projective and PM ¥= P for every maximal two-sided ideal M of R.

2. Theorem 1. Let R be a subring of a ring S such that SR is projective. Then

SR = R © S' for some module S' if and only if SR is faithfully projective.

Proof. If SR is projective and R is a direct summand of S, then it is a triviality

to prove that SR is faithfully projective.

Conversely, assume that SR is faithfully projective. Let G be the direct sum of a

sufficiently large, infinite number of copies of R so that GR maps onto SR. Then

RFR = RSR ®RGR is an Ä-bimodule which, as a right Ä-module, is free with basis,

say, {e,}. Let 1 G R c S have representation 1 = 27 e¡r¡ in this basis. We shall

consider the left ideal

0{\) = (<¡>(1): <f> G Hom(F, R)).

Since Hom(F, R) = II R&, where <*»,.(<?,-) = Sy, we have 0(1) = II Ä</>,(1) =

27 Rr¡.

We first want to show that O(l) is a two-sided ideal. Since F is an Ä-bimodule,

fe¡ G F for all/ G R. Thus/e, = 2y &/« from some^ G R and

/• 1 =/' (2 Vi) "2 ejf¡/¡-
•J
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On the other hand,/- 1 = 1 •/ = 2 e/jf. Identifying coefficients gives

'/ - 2 fi/i G 2 Rr¡>
i

and consequently r;Ä Ç S Rr¡ for each 1 < j < m. Thus O(l) is indeed a two-

sided ideal.

Suppose that 0(1) ¥= R. Then 0(1) is contained in some maximal two-sided

ideal, say M. Notice that SM n R ¥= R. (If SM n Ä = Ä, then 5 = 5 (SM n R)

Ç SM, contradicting the faithful projectivity of S.) Thus S M n R = M. But this

implies that FM n R = FM n S n R = SM n R = M. Thus

1 = 2 %«i e #• O(l) n Ä Ç FM n R = M;

which is clearly absurd. Therefore O(l) = R.

Thus there exists a homomorphism <¡>: F—* R, or its restriction <p: S —» Ä, such

that cp(l) = 1. Consequently Ä is a direct summand of 5.

3. Examples.

(3.1) The following is an example of a projective, but not faithfully projective

ring extension. Let

«-(ï ?)«-(; »

Then R is a hereditary Noetherian prime ring and is the idealizer of the right ideal

'-(? f)
of S. Furthermore 57 = S. Therefore 5Ä is projective but not faithfully projective,

and thus R cannot be a direct summand of S.

(3.2) The following example, suggested by a remark of Murray Schacher,

provides a ring extension R <z S such that SR is free, but S/R is not free. Let

R = R[x,y, z]/(x2 + v2 + z2 — 1) and let P be the kernel of the homomorphism:

<p: R3 -» /?;       <p(a, 6, c) = xa + v6 + zc.

Since (p is surjective, P is projective, and it is well-known that P is not free (see, for

example, [3, p. 30]). Let S be the trivial extension of R, that is,

.-{(J ty.*,„}:>,-{(; ;)|,e»}.
Then, as an Ä-module S splits; 5Ä as /? © P. So 5Ä = R0) is free but 5/Ä » P is

not.

Remark. The situation illustrated by Example 3.2 cannot occur when S is an

infinite-dimensional free Ä-module, since the "stably free" implies "free" [3,

Proposition 4.2]. Similarly, if S has a "large" rank as an Ä-module, then S/R must

be free; precisely, if R is Noetherian and the rank of S is larger than the Krull

dimension of R (in the sense of Rentschler-Gabriel), then it follows from [5] that

S/R must be free.
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