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SUBORDINATION BY UNIVALENT FUNCTIONS

SUNDER SINGH AND RAM SINGH

Abstract. Let A' be the class of functions f(z) ~ z + a2z2 + • • • , which are

regular and univalently convex in \z\ < 1. In this paper we establish certain

subordination relations between an arbitrary member / of K, its partial sums and

the functions (A/z)/£/(/)<* and y. f'Q t~lf(t)dt. The well-known result that z/2 is

subordinate to f(z) in |z| < 1 for every/belonging to K follows as a particular case

from our results. We also improve certain results of Robinson regarding subordina-

tion by univalent functions. A sufficient condition for a univalent function to be

convex of order o is also given.

Introduction. Let A denote the class of functions /(z) = z + a2z2 + • • • which

are regular in |z| < 1. We denote by 5 the subclass of A consisting of functions/

which are univalent in |z| < 1; S* and K will stand for the usual subclasses of S

whose members are, respectively, starlike (w.r.t. the origin) and convex in |z| < 1.

A function/belonging to A is said to be convex of order a, 0 < a < 1, in |z| < 1 if

and only if

Re{l + 5ni)>a   (|z|<1)' (1)

and we shall denote by K(a) the class of functions satisfying (1).

A function/is said to be subordinate to a function F (in symbols/(z) -< F(z)) in

|z| < r if there exists a regular function w(z) with |h>(z)| < |z| < r, such that

/(z) = F(w(z)) in |z| < r. For F univalent in |z| < r, /(z) -< F(z) in |z| < r is

equivalent to/(0) = F(0) and/(|z| < r) c F(|z| < r).

In the sequel whenever we come across the notation/(z) < F(z) for |z| < r we

shall understand that the superordinate function F is univalent in |z| < r and

/(0) = F(0).
The Hadamard product or convolution of two power series /(z) = ~Z^0anzn

and g(z) = 2"_o bnz" is defined as the power series 2"_0 ctnbnz" and denoted by

(/**)(*)■

A sequence {bn}f of complex numbers is called a subordinating factor sequence

if, whenever/(z) = 'Z™=x anz" is univalent and convex in |z| < 1, we have

in |z| < 1.

2 anbnz"<f(z)
n-\
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The de la Vallée Poussin means of a regular function/(z) = axz + a2z2 +

are defined by

^-a-rii2;*)«. .*.
k-l

for n = 1, 2, 3, ... . Pólya and Schoenberg [5, Theorem 2, p. 298] showed that

these means are convex (starlike) if and only if /is convex (starlike).

Robinson found a number r0, 0 < r0 < 1, with the property that if/ and F are

regular for |z| < l,/(0) = F(0) then the relation zf'(z) < zF'{z) in |z| < 1 implies

that /(z) -< F(z) at least for |z| < r0 [8, Theorem, p. 20]. In our first theorem we

improve this result. Theorem 2 improves a similar result of Robinson [8, Theorem,

p. 22]. In Theorem 3 we give a sufficient condition, involving the principle of

subordination, for a univalent function to be convex of order a. Theorems 4 and 5

deal with subordination relations between an arbitrary element f of K and its

"convex transformations" (A/z)jz0f(i)dt and /i/Sr'/(í)¡ií, where X, p. are some

positive real numbers. Theorem 6 generalizes the well-known result z/2 -< f(z) for

every member / of K and the last one deals with a subordination relation between

the de la Vallée Poussin mean of second order and the second partial sum of a

normalized convex univalent function.

The following result due to Suffridge [10] will be used to prove Theorem 1.

Lemma I. fff G K, g(z) = 2~_, b„z" is regular in |z| < 1, and zg'(z) < zf'(z)for

\z\ < 1, then g(z) -< /(z).

Theorem 1. If f(z) and F(z) are regular for \z\ < 1, zF'(z) is univalent in \z\ < 1,

/(0) = F(0) and zf'(z) < zF'(z), then

/(z) < F{z)   at least for \z\ < r0, (2)

where r0 = tanh w/4 = 0.655 ....

Proof. Since zF'(z) is univalent in |z| < 1, it is starlike for |z| <

tanh 7r/4 = r0 (say) and hence F(z) is convex in this disc. From this it follows that

F(roz) is convex in |z| < 1. Thus our hypothesis implies that

z/'(/oz) -< zF'(roz),        |z| < 1,

where now F(r0z) is convex in |z| < 1. From this, using Lemma 1, we conclude that

f(roz) < F(roz)

in |z| < 1 and hence

/(z) < F(z)

at least for |z| < r0, where r0 = tanh it/A. This completes the proof of our theorem.

Robinson [8] was able to establish the relation (2) only for |z| < 1/5. We have

thus considerably improved his result.

The following result of Ruscheweyh and Sheil-Small [9, Theorem 4.1] finds an

application in our next theorem.

Lemma 2. Let <f> and \¡/ be convex in \z\ < 1 and suppose that f is subordinate to \p.

Then ($ *f)(z) < (<. * i//)(z), |z| < 1.
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Theorem 2. // g(z) and G(z) are regular for \z\ < 1, [zG(z)]' is univalent in

\z\ < 1 and [zg(z)\ is subordinate to [zG(z)]' in \z\ < 1, then

g{z) < G(z) (3)

at least for |z| < 2 - VJ = 0.268_

Proof. We define/ and F by the relations

2/(z)=[zg(z)]'    and    2F(z) = [zG(z)]'.

Thus we are given that

2/(z) < 2F(z)

or

f(z)<F(z),        |z|<l.

We have to prove that

g(z) = - Cf{t)dt < - \!F{t)dt = G(z),
z J0 z J0

at least for \z\ < 2 - V3 .

Since the function k(z) = z/(l - z) belongs to K, the function

2  rz     t      ,       £      2

z^o   1 - í n = 1 n + 1

also belongs to Ä" [4].

The function F being univalent in |z| < 1 is convex in the disc |z| < 2 — V3 =

/•„ (say). Thus we are given that /(z) ■< F(z) in |z| < 1 and F(z) is convex in

|z| < r0. From this we have that

XV) ■< F(roz)       (|z| < 1),

with F(r0z) convex in |z| < 1. In view of Lemma 2 it follows that

h(z)*f(r0z)<h(z)*F(r0z)

in |z| < 1, which is the same as

g(/oz) < G(r,yz)

in |z| < 1 and hence

g(z) < G(z)

at least for |z| < r0 = 2 - V3 .

It was earlier proved by Robinson [8] that the assertion (3) holds at least in the

disc |z| < 1/5.

In the next theorem we will use the following result of Robertson [6] to

determine a sufficient condition for a univalent function to be in K(a).

Lemma 3. Let /(z) = z + S"_2 anz" be regular and univalent in \z\ < 1. For

0 < t < 1 let F(z, t) be regular in \z\ < 1. Let F(z, 0) =/(z) and F(0, t) = 0. Let p

be a positive real number for which

F(z, t) - F(z, 0)
F{z) =   lim

í->0 + zt"
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exists. Let F(z, i) be subordinate tofiz) in \z\ < 1 for 0 < / < 1. Then

Reí 5^1 < 0,        |z|< 1.
/'(0)

// in addition F(z) is also analytic in \z\ < 1 and Re F(0) ¥^ 0 then Re{F(z)//'(z)}

< Ofor \z\ < 1.

Theorem 3. Iff belongs to S and

F(z, 0 - i(l - f )*«*) + I(l + f )/(ze-') < /(z)

/o/- 0 < / < 1, |z| < 1, and fixed real number a, a < 1, then f belongs to K(a).

Proof. Clearly ffo 0) = /(z), F(0, t) = 0. If

F(z, t) - F(z, 0)

(5)

F{z) -   lim
/->o+

then a simple calculation shows that

dF(z, t)/dt
F(z) =   lim

/-»o+

1

2zt

zt'

=   lim
/-»o+

J_  32F(z,Q

2z 3/2

= --[z/"(z)+/'(z)-«/'(z)]. (6)2t

Since F(z) is regular in |z| < 1 and Re F(0) = - (1 - a)/2 ¥= 0, by the above

lemma we have Re[F(z)//'(z)] < 0 and consequently

M1+A^)>a'     M<1'

that is,/G K(a).

Remark. If o = 0 the subordination condition (5) becomes

(l/2)[/(ze")+/(ze-")]</(z) (7)

which is the result obtained by Robertson [6].

The following three theorems depend on a result due to Wilf [11] that char-

acterizes subordinating factor sequences and, in particular, asserts that if

:{, + 2.l/-2"}
Rejl + 2 2 V"| >0   forlzl< !

then {b„} is a subordinating factor sequence.

Theorem 4. /// belongs to K and g is defined by

tí*} = 7 ['AW, (8)z J0

then for every X, 0 < X < 1/2(1 - log 2) = 1.629 . . ., we have

g(z) < M       (|*| < 1). (9)

and this result is sharp.
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Proof. Suppose/(z) = z + 2"_2 anz". Then

•00-4*+ f 7TTV". (10)

In view of Wilfs result, the assertion (9) will hold for |z| < 1, if

Re|l+2 2i^4T*"}>0       (|z|<l).

Using the fact that Re{(-l/z)log(l - z)} > log 2, [7], we have

Reí 1+2 2 -¿Zn*") =Re{(l-2X)-^log(l-z)}

> (1 - 2À) + 2À log 2 > 0

if A < 1/2(1 -log 2).
To show that this result is sharp we consider the function /(z) = z(l — z)_1

which is an element of K. We have

^ = hS*T=-tdt = x{-l--zlo^-*\

Because g{-\) = - X{\ - log 2} < -1/2 if X > 1/2(1 - log 2) it is, therefore, not

true that g is subordinate to/ for |z| < 1, since the range of /is the half plane {w:

Re w > -1/2}. The proof of Theorem 4 is, therefore, complete.

Theorem 4 with X = 1 was earlier proved by Bernardi [2].

Remark. If/ belongs to S and g is defined as in (8) then, in view of the fact that

/ is convex in |z| < 2 — V3 , it follows that the subordination (9) will hold in

|z| < 2 - V3  for all X, 0 < A < 1/2(1 - log 2).

rz f(t)
g(z) = u( £2 du (,,)

•'o     '

Theorem 5. Iff belongs to K and g is defined by

:M a,

then for every p., 0 < p. < 1/2 log 2 = 0.721 . . ., we have

g(z) < /(z)       f>| < 1). (12)

The result is sharp.

Proof. In view of Wilfs result the assertion (12) will hold in |z| < 1, if

1     )ReJl + 2M2i^"}>0       (|*| <!)•

Letting z = re , we fmd that

Rejl + 2/i2 -***} =Re{l - 2p log(l - z)}

= {1 - 2p. log(l + r2 - 2r cos 0)l/2}

> 1 - 2p. log 2 > 0

provided ft < 1/2 log 2.
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To show that the result is sharp we again consider the function /(z)

= z(l — z)_1 which belongs to K. We have

g(z) = -ft log(l - z).

Thus g(-l) = -p. log 2 < -1/2, if p. > 1/2 log 2 and so g is not subordinate to /

for |z| < 1 since the range of/is the half plane {w: Re w > -1/2}. This completes

the proof of our theorem.

Remark. If/ belongs to S and g is defined as in (11) then the assertion (12) holds

in |z| < 2 — V3 .

For/(z) = 2~_, anz", we define

(i)j„(z,/) = 2a.,^*and
(ii)a„(z,/) = (l/n)2n,_,^(z,/).

Theorem 6. For all elements f of K, we have

(l/«„K(z,/)</(z),        |z|<l, (13)

where an = -2 min^, Re{2X_i zk}> and

(l/ßn)on(z,f)<f(z),        |z|<l, (14)

where ßn = - (2/n)min|r|<1 Re{2n*_,(« - k + \)zk}.

Proof. Suppose

/(z) = z +  2 a„z",
n = 2

then

t       t\ i 2    . in

and
i i i

aJz,f) = z +-a2z2 +-a3z3 + • • • +-a„z".
"v *■" n      2 n      3 n   "

In view of Wilfs result quoted above we shall have

(l/«„K(z,/)</(z), |Z|<1,

if

(2    "        )
i + — 2 *    >o.     1*1 < i»

an k—\        )

which is true by the definition of an.

This completes the proof of (13). Relation (14) may be similarly established.

Remark. Since o„ < 2n and $, < n + 1, n > 1, relations (13) and (14), in

particular, show that

(l/2nK(z,/H/(z),        |z|<l,

and

(l/(n+ l)K(z,/) </(z),        |z|<l.

The well-known result z/2-< /(z) for every / belonging to K corresponds to

n = 1 in (13) and (14).
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It is easy to compute that a2 = 9/4 and ß2 = 3/2. Thus for n = 2 the above

theorem gives

(4/9>2(z,/) < /(z),        |z|<l,

and

(2/3)a2(z,/)</(z),        |z|<l.

We will need the following lemma due to Keogh [3] to prove our next theorem.

Lemma 4. Suppose that b0, bx, b2 are complex numbers, b2 ¥= 0, and let P(z) = b0

+ bxz + b2z2. Then the zeros of P(z) lie on \z\ < 1 if, and only if

(i) |£>0| < |Z>2| and

(ii) \b0bx - bxb2\ < |Z>2|2 - |A0|2.

Theorem 7. /// belongs to K, then we have

V2(z,f)<s2(z,f) (15)

in \z\ < 2/5, and this result is sharp;

z/2<V2(z,f)<o2(z,f) (16)

in \z\ < 1.

Proof. It is well known that s2(z,f) is starlike univalent in |z| < 1/2 and convex

in |z| < 1/4, and that V2(z,f) is convex for every convex function/in |z| < 1.

First, we want to prove that V2(z,f) is subordinate to s2(z,f) in |z| < 2/5 = r0

(say). That is, F2(r0z,/) < s2(rQZ,f) in |z| < 1. Following Ba§Göze et al. [1], it is

sufficient to show that for each real a, the polynomial

P{z) = a2r¡z2 +To* - (|r0e'° + \a2r2e2ia} (17)

has a zero on |z| < 1. Suppose that for some a it has no zero in |z| < 1. Then the

polynomial

ß(z) = ( \ r0eia + \ a^e^z2 - r^z - a2r\ (18)

has both zeros on |z| < 1; hence by Lemma 4,

<Vo + r0(y r0e-'a + |â2r2<?-2,a)| < \y0eia + -\a-,r.2'0

Writing a2r0 = pe"p, a + <j> = \p, this is equivalent to

|4 + pe'*f - 6|6pe^ + 4 + pe"^| > 36p2. (19)

One readily verifies that the maximum of the left-hand side of (19) is attained at

y¡/ = 7T. Also for \¡i = ir the inequality (i) of Lemma 4 implies that p < 4/7.

Therefore (19) will fail to hold if p2 + 34p - 8 < 36p2 or

(p - 2/5)(p - 4/7) > 0. (20)

Since p < 4/7, the inequality (19) will not hold for all p < 2/5. This proves that

the polynomial P(z) has all its zeros in |z| < 1 for p < 2/5. Since p = |a2ko < ro>

we have proved that for r0 < 2/5, P(z) has all its zeros in |z| < 1 and hence

Vii'ozJ) < s2(v./)    in |z| < 1 (r0 < 2/5).
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This establishes the relation

V2(z,f)< s2(z,f)    in|z|<r0.

To show that our result is sharp in the sense that if 2/5 < r < 1 then there is a

function/in K so that V2(z,f) is not subordinate to s2(z,f) for |z| < r, we consider

the function /(z) = z/(l - z). Then V2(z,f) = (2/3)z + (l/6)z2 and s2{z,f) = z

+ z2. Since V2( — 2/5,/) = s2( — 2/5,f), V2(z,f) is not subordinate to s2(z,f) for

|z| < r (if 2/5 < r < 1). The last assertion depends upon the strict sense in which

equality is possible in Lindelöf's Principle for subordination.

As for the proof of (16) we remark that since o2(z,f) is univalent (in fact starlike)

in |z| < 1 and the relation z/2 < V2{z,f) for every / belonging to K being well

known, we need to prove only

V2(z,f)<o2(z,f),        |z|<l.

It suffices to show that for each real a, the polynomial

R{z) = z + -a2z2 - -eia - -a2e lia
(21)

has a zero on |z| < 1. Suppose that for some a it has no zero in |z| < 1. Then the

polynomial

«.)-{§.
1

--a,e2"" z2
6^   j

has both zeros on |z| < 1; hence by Lemma 5,

2' (22)

1

2*2
3e

1 _
+ -a2e

-lia -e'a +-a,e lia

2*2

Writing a2 = pe"*", a + <j> = 5, this is equivalent to

|4 + pe/Ä|   - 6|3pe(í + 4 + pe-'s\ > 9p2. (23)

Proceeding as in the proof of (15) we arrive at the conclusion that for p < 1, (23)

is not true and hence R(z) will have all its zeros in |z| < 1 for p < 1. This then will

complete the proof of (16).
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