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A PROOF OF THE BOUNDARY THEOREM

KENNETH R. DAVIDSON

Abstract. This note contains a simple proof of the following theorem of Arveson:

If & is an irreducible subspace of ® (//), then the identity map i>^A) = A on &

has a unique completely positive extension to *$> (H) if and only if the quotient map

q by the compact operators is not completely isometric on S « [& + &*].

Given a linear map <¡¡: & -* © of one C* algebra into another, we can form the

maps </> <8> id„ of n X n matrices with coefficients in & to n X n matrices with

coefficients in © by taking (Ay) to (¡¡¡(Ay)). The map <¡¡ is said to be completely

positive if <¡¡ <8> id„ is positive for all n. These maps have proved to be of importance

in the study of extensions of C* algebras (e.g., [3], [4]), and in the study of

nonselfadjoint subalgebras of C* algebras [1], [2]. The difference between positive

and completely positive maps has provided insight into the difference between

positivity and sums of squares and Hubert's seventeenth problem [5].

Stinespring [7] showed that complete positivity is intimately connected with the

algebraic structure of the C* algebra. He showed that if <j>: & -> © (%) is a unital

(</>(/) = /), completely positive map of a C* algebra & into the bounded operators

on a Hubert space %, then <¡¡ has the form <¡¡(A) = V*it(A)V, where it is a *

representation of éB on another Hilbert space % and V: % -> % is an isometric

embedding of % into %. In general, positive maps are not this nice, but in

commutative algebras every positive map is completely positive.

Arveson [1] recognized that © (%) is injective for completely positive maps. He

proved that if £ is a completely positive map from a selfadjoint subspace (contain-

ing the identity) of a C* algebra & into © (%), then <¡¡ has a completely positive

extension </>,: £ -» *$>(%). In his study [1], [2] of nonselfadjoint subalgebras of C*

algebras, he showed that completely positive maps on these subalgebras which have

a unique completely positive extension of the whole C* algebra play an important

role. In the important special case of an irreducible subalgebra & of % (%), it was

shown that "sufficiently many" of these maps exist provided the identity map

restricted to & has a unique completely positive extension.

Let & be an irreducible linear subspace of © (9C), and let S be the closed linear

span of & u &*■ A map <i>: & ->• © (%) is completely contractive if ||<f> ® id„|| < 1

for all n. Such a <¡¡ has a unique completely positive extension to S, namely set

<j>(A*) = <¡¡(A)* and extend by linearity. Corresponding, every completely positive

map with <¡¡(I) = I is completely contractive. We say that <¡¡ is completely isometric
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if <¡¡ ® id„ is isometric for all n. Let q denote the quotient map of ©(DC) onto the

Calkin algebra © (DC)/(2(DC) where 6(DC) is the ideal of compact operators.

We can now state Arveson's "Boundary Theorem" [2] which gives necessary and

sufficient conditions for the identity map on & to have a unique completely

positive extension to © (DC) (namely the identity map). The purpose of this note is

to provide a simpler proof of this thoerem.
■

Theorem The identity map <¡>0(A) = A restricted to <£ has a unique completely

positive extension to © (DC) if and only if q is not completely isometric on S = [& +

Proof. One direction is straightforward. If q is completely isometric on S, then

the map \p0: q(A) = A is a completely positive map of q($) into ©(DC). By

Arveson's extension theorem, there is a completely positive map \¡/ from the Calkin

algebra into ©(DC) which extends \p0. Then <j¡ = yp- q extends </>0 and annihilates

the compact operators; so it is not the identity map.

For the converse, let <i> be any completely positive extension of <#>0. Since q is not

completely isometric on S, there is an integer n so that q ® id„ is not isometric on

S <S> 911,,. (91t„ denotes the « X « matrices over 6.) The map <¡¡0 ® id„ has a

completely positive extension tf> ® id„ to © (DC) <S) 911,, which is the identity map if

and only if </> is the identity. So without loss of generality, we can suppose that q is

not isometric on S.

By Stinespring's theorem [7], there is a representation it of © (DC) on a Hilbert

space DC and an isometry V: DC -h> DC such that <(¡(X) = V*it(X)V for all X in

©(DC). 6(DC) is a two-sided ideal in ©(DC) and its only irreducible representation

is the identity representation. So it can be decomposed as it = tta © its on DC = DCa

© DC, so that ita is a multiple of the identity representation, and its annihilates the

compact operators [6, §4.7.22]. We identify DCa with a direct sum SDC of copies of

DC via ita s n ■ id, where n is some cardinal number. Also, we can factor its =

W, ° q.

Choose a T in S so that || r|| > J|^(r)||. Then there is a unit vector £ such that

||HU = \\T\\. Furthermore, Ê = {£ ||T||| = ||T|| • |||||} is a finite dimensional

subspace. To see this, write T = U\T\ in its polar decomposition. Then || \T \ \\

= ||r|| > \\q(T)\\ = ||o(|r|)||. So the restriction of \T\ to the spectral subspace

£[||9(^)ll + £. II ̂ 11] is compact and nonzero. So the subspace E[\\ T\\] is nonempty

and finite dimensional, and is precisely S.

If | <E S, then F£ e DCa. For if K| - va © vs,

lim2 = ||<i»(r)£||2 = \\V*(ita(T)va © w, o q(T)vs)f

< \\T\\2\\paf + \\q(T)\\2\\vs\\2 < \\T\\2U\\2.

The extreme terms are equal, so it follows that vs = 0 and ||wa(7')»'a|| = H^HIIíH.

Thus, KSç©SS.

Let 91 be a minimal nonzero subspace of S satisfying V 91 C © 291. Let

r = {X e © (DC): VXv = it(X) Vv for all v in 91}. Then T is a closed linear space

containing the identity /. We will show that if X belongs to T and S belongs to S,

then SX belongs to T.
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Let X and S be fixed, and set %={i-6 9l: ||SA>|| = \\SX\^\\ • ||f||}. If v

belongs to 91,,, then

\\SXv\\ = \\<b(S)Xv\\ = \\V*it(S)VXv\\ = \\V*it(SX)Vv\\

< H»(SY)leMdl • M = lisary • M = \\sxv\\.

Hence Vv belongs to ©291o and V%> Ç © 29lq. By the minimality of 91, we

must have 91 = %. It also follows that \\it(SX)Vv\\ = || V*it(SX)Vv\\ =

\\VV*it(SX)Vv\\. So

^(SX)^ = FK*7r(-SX*)^" = VV*tt(S)VXv = F(f>(S)A> = KSAV.

This holds for all v in 9^ = 91, so SX belongs to I\

Since S is selfadjoint, T must contain C*(S ). As noted earlier, the orthogonal

projection onto S belongs to C*(S), so C*(S) contains a nonzero compact

operator. Since & is irreducible, C*(S ) must contain all compact operators. If X

and S are operators in C*(S ),

XSv = V*VXSv = V*it(XS)Vv = FM^MS)!'»'

= K*7r(X)KÄ=«i»(A')Si'.

But C*(S ) is transitive, thus <¡>(X) = X for all X in C*(S ).

Finally, since <f> is the identity on the compact operators, V% must be contained

in DCa. Consequently, it = ita is ultra-weakly continuous. Hence <¡¡ is the identity on

all of © (DC).
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