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AN ABSTRACT LINEAR VOLTERRA EQUATION

WITH A NONCONVOLUTION KERNEL

T. KIFFE

Abstract. This paper is concerned with the existence and uniqueness of solutions

to the equation x{t) + f'0 a(l, t)Ax(t) dr — fit) where A is an unbounded, posi-

tive, selfadjoint operator on a Hilbert space. A representation is given for the

solution of this equation.

1. Introduction. In this paper we will be concerned with the existence and

uniqueness of solutions to the equation

x{t) + f'a(t, t)Ax(t) dr = f(t),       0 < t < T, (1.1)
•'o

where A is an unbounded, positive, selfadjoint operator on a Hilbert space H,

a(t, t) is a real-valued function and x, f: [0, T] -* H. Our goal is to extend the

existence and uniqueness results of Clement and Nohel [1], Friedman and Shinbrot

[2], and Kiffe and Stecher [7] for the convolution equation

x(t) + / b{t - t)Ax(t) d-r = f(t),       0 < t < T, (1.2)
-'o

to the nonconvolution equation (1.1).

Our approach to solving (1.1) will follow that of [1], [7] and consists of first

considering the properties of the solutions of the resolvent scalar equations

rx(t, t) + Xf'a(t, u)rx(u, t) du = a(t, t) (1.3)
T

and

sx(t, r)+X f'a(t, u)sx(u, r) du = 1. (1.4)

If we define resolvent operators R(t, r) and S(t, t) by

*(', t) - f   rx(t, t) dE(X) (1.5)

and

S{t, r) = rSx(t, t) dE(X), (1.6)
A)

where {F(À)|À > 0} is the resolution of the identity determined by A, it will be

shown that solutions of (1.1) can be written in the form

x(t)=f(t)-f'R(t,r)Af(r)dr, (1.7)
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or

x(t) = S(t, 0)/(0) + f's(t, t)/'(t) dr (1.8)
■'0

under suitable assumptions on a, / and /'. For other related results on linear

Volterra equations in abstract spaces we refer the interested reader to [5], [6].

2. Statement and discussion of results. Throughout this paper H will denote a real

Hilbert space with norm | • | and inner product < • , • > and

Ll[0, T; H] = j/: [0, T] -> H\f is strongly measurable and ( \f(t)\ dt < oo].

A will always denote an unbounded, positive, linear, selfadjoint operator from H

to H with dense domain D(A) and {F(à)|a > 0} will denote the resolution of the

identity determined by A. For the standard results concerning the resolution of the

identity and the spectral theorem for selfadjoint operators we refer the reader to

[10]. We shall also set Ha = D(A °) for 0 < a < oo and if we define a norm on H

by 11*||„ ■* |*| + M "*I then Ha becomes a Hilbert space itself.

Next we define precisely what we mean by a solution of (1.1). A function x:

[0, F]-> H is a strong solution of (1.1) if x G L'[0, T; H], x(t) G D(A) a.e. on

[0, T], Ax G L'[0, T; H] and x(t) satisfies (1.1) on [0, T]. Later we will define a

weak solution of (1.1).

Concerning the kernel a(t, t) we shall assume

(i) a(t, t) is continuous for 0 < t < t < T and is absolutely continuous in t for

each fixed t, t < t < T;

(ii) 0 < e < a(t, t) for 0 < t < / < T for some constant e and (9/9r)a(f, t) < 0

for 0 < t < / < T;

(iii) a(í, i) + f'0(d/dt)a(t, t) ¿t > 0 for 0 < t < T;

(iv) for each X > 0 the solution of (1.3) satisfies rA(r, t) > 0 for 0 < t < / < T.

Theorem 1. Suppose a(t, t) satisfies (i)-(iv). If f = /, + f2 where fx G

L'[0, T;Hx + a] and f2 G Wll[0, T; HJ'for some a, 0 < a < 1, i/ien (1.1) nos a

unique strong solution x(t) = xx(t) + x2(t) where xx(t) is given by (1.7) with / = /,

and x2(t) is given by (1.8) with f = f2. Furthermore there is a constant c = c(T) > 0

depending only on a, a and T such that

\\x\\l'[0,T;H]  < c{\\fl\\L>[0,T;Ha] + ll/zll W"[0,T;H\} • (2-0

In Theorem 1, fF1,1 is the usual Sobolev space and concerning the hypothesis on

a(t, t) we remark that (i) and (ii) imply that for each X > 0 the solution of (1.4)

satisfies sx(t, t) > 0 (see (3.2)-(3.4) below). A sufficient condition on a(t, t) which

insures (iv) is given in [4, Theorem 1] which under suitable differentiability

conditions is equivalent to (9/9T)(3/9r)log a(t, t) < 0. Condition (iii) is a technical

assumption needed to handle nonconvolution kernels. These assumptions on a(t, t)

are the natural extension to nonconvolution kernels of the conditions imposed on

b{t) in (1.2) in [1], [7]. In [2] Laplace transform methods are used to study (1.2) and

hence their methods have no direct extension to convolution equations. Also in [1],

[2] (1.2) is studied in a more general setting than used here for (1.1).
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Similar to [1] we define a weak solution of (1.1) as follows. A function x:

[0, T] -» H is a weak solution of (1.1) if there are sequences {*„} and {/„} where

each/, G L'[0, T; H] and each xn is a strong solution of (1.1) with/ = /„ such that

/„ -»/and x„ -» x in L'[0, F; //]. It is immediate from (2.1) that (1.1) has a unique

weak solution if/ G Ll[0, T; Ha] + Wu[0, T; H] for some a, 0 < a < 1, given by

(1.7) and (1.8). (Note that L'[0, F; /f1+a] is dense in L'[0, T; Ha] with respect to

the norm in L'[0, T; Ha\; similarly Wu[0, T; Ha] is dense in Wu[0, T; H].)

If / satisfies the hypotheses of Theorem 1 with a = 1 (i.e., / G

L'[0, T; H2] + Wl\0, T; Hx]) then the hypotheses on a(t, t) can be significantly

weakened.

Theorem 2. Suppose a(t, t) is positive and continuous for 0 < t < t < T, that for

each fixed t, a(t, t) is a nonincreasing function of t, and that f0 a(t, t) dr is absolutely

continuous for 0 < t < T. If f G /.'[O, T; H2\ + Wx'\0, T; Hx] then (1.1) has a

unique strong solution x(t) = xx(t) + x2(t) where xx and x2 are as given in Theorem

1 and x(t) satisfies (2.1).

Theorem 2 now implies that (1.1) has a unique weak solution given by (1.7) and

(1.8) if / G L'[0, T; Hx] + Wx'\0, T; H] if a(t, t) is continuous, positive and

nonincreasing in t. The proof of Theorem 2 uses a remarkable inequality due to

Levin [8].

3. Proofs. Let rx(t, t) and sx(t, t) be the unique solutions of (1.3) and (1.4)

respectively. By Theorem 3.1 of [9] rx(t, t) and sx(t, t) are continuous in («, t) for

each fixed À and a direct application of Gronwall's inequality shows that rx(t, r)

and sx(t, t) are also continuous in X. Also a direct substitution establishes that

sx(t,r)=l-XJ'rx(t,u)du. (3.1)
T

By hypothesis rx(t, r) > 0 for X > 0, 0 < t < t < T. Next we show that

sx(t, t) > 0   for X > 0, 0 < t < t < T. (3.2)

Fix t and X. Suppose (3.2) is false. Since sx(r, t) = 1 there is a number t0 > t so

that sx(t0, t) = 0 but sx(t, t) > 0 for r < / < f0. Hence we must have that

(d/dt)sx(t0, t) < 0. Now differentiate (1.4) with respect to t and evaluate at / = /„

to obtain

97^('o. 0 + M>o> 'oK('o, t) + Xf'°— a(t0, u)sx(u, r) dr = 0.       (3.3)

By (ii) we obtain (9/9í)ax(í0, t) > 0 unless (9/9/)a(i0, «) = 0 a.e. for t < u < t0.

But then we obtain

(d/dt)sx(t, t) + Xa(t, t)sx(t, t) = 0   for t < / < t0. (3.4)

Solving for sx(t, t) in (3.4) we obtain äx(r0, t) = C exp(-/J.° a(u, u) du) > 0, again

a contradiction. This establishes (3.2).
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Next we wish to show that there are positive constants Ca for 0 < a < 1,

independent of (r, t), so that

(3.5)sup Xarx(t, r) < Caa(t, r)(t - r)  a

and

sup X V> t) < Ca(t - t)~
a>o

By Theorem 2.7 of [9] we can rewrite (1.3) as

r\({> ") = «('» ") - ÀJ  r\(^ o)a(o, u) do.

(3.6)

(3.7)

Integrating (3.7) in u from t to / and interchanging the order of integration we

obtain

j'rx(t, u) du = f'a(t, u) du - XJ'rx(t, o)\ f°a(o, u) du do. (3.8)

By (iii) we have /" a(p, u) du is an increasing function of o and since rx(t, r) > 0

(3.8) implies

f'rx(t, u) du > j^a{t, u) du - a[/t'û(î, u) du] i f'rx(t, o) do .       (3.9)

Solving (3.9) we get

f'rx(t, u) du > Í f'a(t, u) du]\ 1 + Xf'a(t, u) du]    . (3.10)

On the other hand the second part of (ii) implies

X i  rx{t, u)du < —
Jr

and hence we have

a(t, r) a(t, r)

rx(t, r) < a(t, r)

Combining (3.10) and (3.11) we obtain

rx(t, t) < a(t, t)

l-Xf'rx(t,u)du].
J

1 + Xf'a(t,u) du
l-i

(Note that (3.12) extends Theorem 1 of [3].) By (3.1) and (3.12) we obtain

*x(t, t) < 1 + X ( a(t, u) du

(3.11)

(3.12)

(3.13)

Now multiplying (3.12) and (3.13) by Xa, maximizing in X for 0 < a < 1 and using

the first part of (ii) we obtain (3.5) and (3.6).

Define resolvent operators R(t, t) and S(t, t) by (1.5) and (1.6) respectively. By

(3.5) and (3.6) we have

11^1 aR(t, t)|| < Caa(t, r)(t - t)-",       0 < a < 1, (3.14)

\\AaS(t, t)|| < Ca(t - t)-°,       0 < « < 1, (3.15)
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where || • || is the operator norm. It follows easily from the continuity of rx(t, r)

and sx(t, r) and the dominated convergence theorem that, for each x G H,

A "R(t, t)x and A aS(t, t)x are continuous in (r, t). Next we shall show that

f'a(t, u)AS(u, t)x du = x - S(t, r)x (3.16)
•'t

and

f'a(t, u)AR(u, r)x du = a(t, r)x - R(t, r)x (3.17)

for x G D(A a) and 0 < a < 1.

To establish (3.16) note that a(t, u)AS(u, r)x = a(t, u)Ax~aS(u, r)Aax so that

by (3.15) the integral in (3.16) makes sense. Hence if v G H we have

{f'a(t, u)AS(u, r)x du,y} = f'f°°Xa(t> «K(«> *) dEx¿X) du

= r ('Xa{t, u)sx(u, t) du dEx%y(X)

00

= /   [ 1 - sx(t, t)] dEx¿X) - ix - S(t, r)x,y}        (3.18)
•'o

which establishes (3.16). The proof of (3.17) is similar.

To complete the proof of Theorem 1 we must show that if xx(t) — fx(t) —

}'0 R(t, t)4/,(t) dT and if x2(t) = S(t, 0)/2(0) + f'Q S(t, t)/'(t) dr then *,(/) and

x2(t) satisfy (1.1). If jc,(i) is as given above we have

f'a(t, t)Axx(t) dr = f'a(t, r)Afx(r) dr - V f a(t, t)AR(t, u)Afx(u) du dr
•>o Jo Jo Jo

= f'a(t, t)4/,(t) dr- f f'a(t, r)AR(r, u) dr Afx(u) du

= f'a(t, r)Afx(r) dr - f'a(t, u)Afx(u) du + Í'r(í, u)Afx(u) du
Jo Jo Jo

= /,(0-*,(') (3.19)

by (3.17) and the fact that Afx(u) G D(A "). Similarly we have

f'a(t, r)Ax2(r) dr = f'a(t, r)AS(r, 0)/2(0) dr
Jo Jo

+ [' f'a(t, r)AS(r, u) dr f'2{u) du

= /2(0) - S(t, 0)/2(0) + f'fjfu) du - ['S(t, u)fi(u) du
Jo Jo

= f2(t) S(t, 0)/2(0) + ['S(t, u)fi(u) du

= fz(t)-x2{t) (3.20)

by (3.16) and the fact that/2 G D(A"). Now (2.1) follows immediately from this

representation of solutions and uniqueness is proved exactly as in Lemma 2.3 of [1].
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The proof of Theorem 2 only entails one major change in the proof of Theorem

1, namely establishing inequalities similar to (3.5) and (3.6) for a = 0. We now wish

to show that

sup|rx(/,T)|<2a(T,T) (3.21)
A>0

and

sup \sx(t, r)\ < 1. (3.22)
X>0

We begin by replacing r by / + t in (1.3) and (1.4). A simple change of variable

and the substitutions rx(t) = rx(t + r, r), sx(t) = sx(t + r, r), ä(t) = a(t + r, r)

and b(t,y) = a(t + r,y + r) allow us to rewrite (1.3) and (1.4) as

rx(t) + f'xb(t,y)rx(y) ay = ä{t) (3.23)
-'o

and

s\(t) + f'Xb(t,y)sx(y) dy - 1. (3.24)
•'o

The kernel Xb(t, y) (t fixed) satisfies the hypotheses of Theorem 2 of [8] and hence

we may conclude that

\rx(t)\ < 2a(r, r), (3.25)

\sx(t)\ < 1. (3.26)

This immediately establishes (3.21) and (3.22). Exactly as before one can show that

(3.16) and (3.17) are valid for x G D(A) and hence the calculations in (3.19) and

(3.20) are still valid under the more restrictive hypotheses on/(f).

The uniqueness of the solution is proved as before with the following minor

change. If we define J„ = (I + A/n)~x and A„ = n(I — Jn) then A„ is a bounded,

positive, selfadjoint operator satisfying An = AJ„. If {Fn(X)|X > 0} is the resolution

of the identity associated with An, then we have dEn(X) = (1 + X/n)~xdE(X).

Hence, if R„(t, r) is the resolvent operator given by An (cf. (1.5)) then R„(t, r) =

J„R(t, r). It follows immediately that f0 Rn(t, r)g(r) dr -> f0 R(t, r)g(r) dr in

L'[0, T; H] for every g Ë ¿'[0, T; H]. This fact, combined with the proof of

Lemma 2.3 of [1], will establish uniqueness.
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