LOCAL SOLVABILITY OF CONSTANT COEFFICIENT PARTIAL DIFFERENTIAL EQUATIONS AS A SMALL DIVISOR PROBLEM

JIRI DADOK¹ AND MICHAEL TAYLOR²

ABSTRACT. Local solvability of P(D)u = f is reduced to a small divisor problem in Fourier series.

The existence of a fundamental solution for an arbitrary constant coefficient operator P(D) was established by Malgrange [3] and Ehrenpreis [1], and Hörmander [2] obtained fundamental solutions with the best regularity properties. The latter result shows that there is a solution u to $P(D)u = f \in L^2_{loc}$ with u and $P^{(\alpha)}(D)u$ in L^2_{loc} , where $P^{(\alpha)}(\xi) = D_{\xi}^{\alpha}P(\xi)$. In this note we solve the equation $P(D)u = f \in C_0^{\infty}(\Omega)$ or $\mathcal{E}'(\Omega)$ on an arbitrary bounded open set Ω in \mathbb{R}^n by reducing it to a division problem in Fourier series which is solved by quite elementary means. As a simple remark at the end we note that if the coefficients of P(D) are rational this Fourier series method can also produce $u \in L^2$ if $f \in L^2(\Omega)$. Let P(D) be a polynomial of degree m in D_1, \ldots, D_n where $D_j = (1/i)(\partial/\partial x_j)$. We first note that to solve P(D)u = f is equivalent to solving $P(D + \alpha)v = g$ where $\alpha \in \mathbb{R}^n$ is fixed and

$$g = e^{-i\alpha \cdot x}f, \quad v = e^{-i\alpha \cdot x}u.$$

Suppose that g is supported in the unit ball. Thinking of g now as a function on the torus $\mathbf{T}^n = \mathbf{R}^n/(2\pi\mathbf{Z})^n$, we may get our solution v locally on \mathbf{R}^n by solving $P(D + \alpha)v = g$ globally on \mathbf{T}^n for an appropriate α . We therefore prove

THEOREM 1. For almost all $\alpha \in A = \{\alpha \in \mathbb{R}^n : 0 \leq \alpha_j \leq 1\}$,

$$P(D + \alpha): C^{\infty}(\mathbf{T}^n) \to C^{\infty}(\mathbf{T}^n)$$

is an isomorphism, as is

$$P(D + \alpha): \mathfrak{D}'(\mathbf{T}^n) \to \mathfrak{D}'(\mathbf{T}^n).$$

Since C^{∞} functions on the torus are characterised by having rapidly decreasing Fourier coefficients and distributions on the torus are characterised by having Fourier coefficients which are polynomially bounded, Theorem 1 is an immediate consequence of

Received by the editors May 12, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 35A07, 35E20.

¹Research supported by NSF grant MCS79-01858.

²Research supported by NSF grant MSC79-05138.

PROPOSITION 2. There is a $d \in \mathbb{R}$ such that for almost all $\alpha \in A$,

$$|P(k+\alpha)^{-1}| \le C_{\alpha}(1+|k|^2)^d \text{ for all } k \in \mathbb{Z}^n.$$
 (1)

PROOF. Suppose we can show that for some d, C, the set

$$S_C = \left\{ \xi \in \mathbb{R}^n : |P(\xi)^{-1}| > C(1 + |\xi|^2)^d \right\}$$
 (2)

has finite Lebesgue measure; $\operatorname{meas}(S_C) < \infty$. Then, by the Lebesgue dominated convergence theorem $\lim_{a \to \infty} \operatorname{meas}(S_a) = 0$, and thus given $1 > \varepsilon > 0$ the set $\pi(S_a)$ in $\mathbb{R}^n/\mathbb{Z}^n \leftarrow \mathbb{R}^n$: π has measure smaller than ε if α is large enough. Therefore, for such α , the set $A_\alpha = \{\alpha \in A : \pi(S_\alpha + \alpha) \cap \pi(\mathbb{Z}^n) = \emptyset\}$ has measure larger than $1 - \varepsilon$, and for $\alpha \in A_\alpha$ (1) holds.

To establish (2), it is enough to show that, for some $\delta > 0$,

$$\int_{|\xi| > 1} |P(\xi)|^{-\delta} |\xi|^{-2n} d\xi < \infty.$$
 (3)

A change of variable gives

$$\int_{|\xi| > 1} |P(\xi)|^{-\delta} |\xi|^{-2n} d\xi = \int_{|\xi| < 1} \left| P\left(\frac{\xi}{|\xi|^2}\right) \right|^{-\delta} d\xi$$
$$= \int_{|\xi| < 1} |\xi|^{2m\delta} |Q(\xi)|^{-\delta} d\xi$$

with $Q(\xi) = |\xi|^{2m} P(\xi/|\xi|^2)$ a polynomial of degree 2m. Thus the following lemma establishes (3) and finishes the proof of Proposition 2.

LEMMA 3. Let $Q(\xi)$ be a polynomial of degree r. Then, for $0 < \delta < 1/r$, $|Q(\xi)|^{-\delta} \in L^1_{loc}$.

PROOF. We may as well assume that Q(0) = 0 and show that $|Q|^{-\delta}$ is integrable near the origin. Now $Q(\xi)$ restricted to some line passing through the origin must be a polynomial of degree r in one variable. Changing coordinates, we may assume that it is the line $\xi' = (\xi_2, \ldots, \xi_n) = 0$. Thus $Q(\xi) = c\xi_1' + p_{r-1}(\xi')\xi_1'^{-1} + \cdots + p_0(\xi')$, $c \neq 0$. If $0 < \delta < 1/r$ an easy one variable calculation shows that $\int_{-1}^{1} |Q(\xi_1, \xi')|^{-\delta} d\xi_1 \le \text{const for all } |\xi'| \le 1$. Q.E.D.

REMARK 1. Using dilations of \mathbb{R}^n and Theorem 1 shows that we can solve $P(D)u = f \in C_0^{\infty}(\Omega)$ or $\mathcal{E}'(\Omega)$ on an arbitrary bounded open set $\Omega \subset \mathbb{R}^n$.

REMARK 2. Proposition 2 shows that given a polynomial $P(\xi)$ one can find an affine lattice on which P^{-1} is polynomially bounded. If P has integer (or more generally, rational) coefficients, it is very easy to produce an affine lattice on which P^{-1} is bounded. Indeed, if $P(\xi) = \sum_{|\beta| \le m} a_{\beta} \xi^{\beta}$, pick $q = (q_1, \ldots, q_n) \in \mathbb{Z}^n$, let $p = (q_1, \ldots, q_n)^m$, and consider

$$Q(k) = P\left(pk_1 + \frac{1}{q_1}, pk_2 + \frac{1}{q_2}, \dots\right) = \sum_{\beta \neq 0} b_{\beta}(q)k^{\beta} + \sum_{|\beta| < m} a_{\beta} \frac{1}{q^{\beta}}$$
(4)

with $b_{\beta}(q) \in \mathbb{Z}$. By choosing q appropriately we can make sure that the second sum on the right of (4) is not an integer, and therefore $|Q(k)|^{-1}$ is bounded on \mathbb{Z}^n . This

then gives an alternate proof of local solvability of equations with rational coefficients, and gives a solution $u \in L^2(\Omega)$ to $P(D)u = f \in L^2(\Omega)$ in this case, for Ω bounded.

REFERENCES

- 1. L. Ehrenpreis, Solution of some problems of division, Amer. J. Math. 76 (1954), 883-903.
- 2. L. Hörmander, Local and global properties of fundamental solutions, Math. Scand. 5 (1957), 27-39.
- 3. B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955-1956), 271-355.

DEPARTMENT OF MATHEMATICS, RICE UNIVERSITY, HOUSTON, TEXAS 77001

Current address (Jiri Dadok): Department of Mathematics, Indiana University, Bloomington, Indiana 47405

Current address (Michael Taylor): Department of Mathematics, State University of New York, Stony Brook, New York 11794