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THE GOFFMAN-LIU AREA AND PLATEAU'S PROBLEM

DAVID BINDSCHADLER AND TOGO NISHIURA

Abstract. Goffman and Liu defined a lower semicontinuous area A(f) for linearly

continuous maps/ from the disk into R", showed that A(f) is the Lebesgue area

when / is continuous and thereby extended the notion of area to some discontinu-

ous maps. With the aid of a simple retraction of the punctured disk onto its

boundary, a canonical linearly continuous map fT of the disk is associated with

each continuous closed curve T defined on the boundary of the disk. When T is a

Jordan curve, it is shown that the discontinuous map fT has the property that

A(fr) = A(o) where a is a continuous map of least area spanning I" from the

classical Plateau problem. Finally, the corresponding least area problem in the

class of linearly continuous maps is shown to be trivial, that is, the least area is zero

in the class of linearly continuous maps.

In the present paper we discuss the relationship between a lower semicontinuous

area defined by Goffman and Liu [5] for a class of possibly discontinuous maps

and the classical Plateau problem of least area for a Jordan curve in space. We

show each Fréchet curve defined on B (the boundary of the closed unit disk D in

R2) corresponds to a family of discontinuous maps defined on D of the type of

Goffman and Liu and that the areas of these maps depend only on the Fréchet

curve. We show, for a Jordan Fréchet curve, the area of the discontinuous map

associated with it is equal to the least area of the continuous surfaces defined on D

whose boundary values on B are representations of the Jordan Fréchet curve.

Finally, we show that the least area problem in the class of linearly continuous

maps is trivial, namely that the least area is zero.

1. Preliminaries. We will have need throughout the paper for the number

sup{|F(£)| | Í G S} associated with a set S and a map F. We will denote this

number by ||F||S.

By a closed curve we mean a continuous map V: B —» R". As usual we say two

closed curves T, and T2 are Fréchet equivalent if there is a sequence of orientation

preserving diffeomorphisms hk: B —» B such that

um iir, - r2 o hk\\B = o.
k—»oo

A Fréchet curve is an equivalence class of closed curves under the Fréchet

equivalence and we denote a class by [T]. There is a natural distance p associated

with Fréchet curves and p([r,], [r2]) < ||r, - T2\\B (see [6, 9.1]).
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A measurable map /: D -»• R" is said to be linearly continuous if, for almost every

x, f\Lx is continuous (Lx = {(x,y)\y G R}) and, for almost every y, f\Ly is

continuous (V = {(x, y)\x E R}). Goffman and Liu defined a metric d on the

class £ of linearly continuous maps [5]. They showed that £ is the completion of

the class of smooth maps defined on D with the metric d. Furthermore, they

showed that there is a lower semicontinuous area function A(f) on £ which agrees

with the usual Lebesgue area for continuous maps. With ¡i as Lebesgue measure on

the line, the metric d is defined as

d(f,g) = max{dl(f,8),d2(f,8)}

where

díÚ,g)-*ri{e\Vi{x\\\f-g\\^>e}<e},

d2(f,g) = inftel^yl ||/ - g\\u > e} < e}.

Convergence in the metric d corresponds to uniform convergence on almost every

Lx and on almost every If.

There is a canonical map /r: D —» R" associated with each closed curve T by

means of the radial retraction r: D \ {0} -> B given by r(£) = |£|"'£. That is,

suppose r: B -» R" is a closed curve. Then/r is the linearly continuous map

/r(£) = f <r ° r^>      * * °>
10> £ = 0.

2. Elementary facts about fT. In this section we develop some elementary

relationships between fT and continuous maps g: D —» R".

2.1. Proposition. Lei g: D ^>R" be a continuous map and let T = g\B. For each

positive integer k, define gk: D —» R" by

1 «(IÍI"1«),     A:"' < III < I-

77ie7i g* w continuous, gk\B = T, i/(/r, gk) < 2A;"1 and A(g) = y4(g*).

Proof. Clearly g* is continuous and/r(£) = g*(|) for k~x < ||| < 1. Hence we

need only show A(g) = A(gk). From [5], we have that A(g) and A(gk) are the

Lebesgue areas of g and gk. One easily sees that g and g* are Fréchet equivalent

maps. Hence A(g) = .4(g*) follows from [1, §§6.3, 31.7].

2.2. Proposition. Let V be a closed curve. Then

A(fT) < inf{/l(g)| g is continuous andg\B = T).

Proof. Suppose g is continuous with g\B = T. Let gk be as in Proposition 2.1

above. The lower semicontinuity of the area function gives A(fT) <Umt_>oo A(gk)

= A(g). The proposition now follows.

2.3. Corollary. Let T be a closed curve. If gk: D^R" is a sequence of

continuous maps such that lim^^Hg^ — T\\B = 0 then A(fT) <limt_>00 A(gk).
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Proof. Let Tk = gk\B. Then lim^,^ d(fT,fv ) = 0, since fT converges to /r

uniformly on each line Lx and W. Hence A(fr) <limJfc_>00 A(fr ) <limk_fiMA(gk),

the last inequality being a consequence of Proposition 2.2.

2.4. Proposition. Let T be a closed curve and 0 < e < 2V2 . Then there is 8 > 0

such that, for each continuous map g with d(fr, g) < 8, there is a continuous map g

with A(g) < A(g), d(fT, g)<eand\\T- g\\B < d(fT, g).

Proof. Let 8 = e/4 and suppose g is a continuous map with d(fr, g) < 8. Then

^i(/r> g) <9 and d2(fT, g) < 8, where dy and d2 come from the definition of d. So

there is a number tj e (0, e/2) so that when t = ± tj we have

ll/r - SlU < ¿,(/r, 8) < «;        ll/r - g\\v < d2(fT, g) < 8.

Denote by C the boundary of / = [-tj, tj] X [-tj, tj]. Since 8 < V2 /2, C is interior

to D and for each £ El D \ I there is a unique point f(£) in C such that £, f(£) and 0

are colinear. We define g as

¿F(¿) = í g(&> * S 7'

U(f(ö),   íe.D\i.
Clearly, g is continuous. So, A(g) = A(g\I) = A(g\I) < A(g). The definitions of g

and/r give ||/r - g\\DSI < 8. So, d(fT, g) <e.

For | G B we have

TO - m\ = |/rtt(8) - gtt«))| < ||/r - *||c < max[^(/r, g), ¿2(/r, g)].

Consequently, ||T — g||fl < d(fv, g). The proposition is completely proved.

3. The area of fT.

3.1. Theorem. Let T be a closed curve. Then A(fT) = min{hmjt_>00 A(gk)\{gk) is

a sequence of continuous maps such that lim^^^H gk — T\\B = 0}.

Proof. There is a sequence of continuous maps {gk} such that A(fr) =

limk_kX A(gk) and limk_l,x d(fr, gk) = 0. By Proposition 2.4, there is a subse-

quence, still denoted by gk, such that associated with each gk is a continuous map

gk such that A(gk) < A(gk) and lim^^Hr — gk\\B = 0. Corollary 2.3 now implies

A(fT) <lim^oo A(gk) <lim^00 A(gk) < lim^^ ^(g*) = A(fT). The theorem is

proved.

3.2. Theorem. Let [T] be a Frèchet curve. Then A(fr) = minflim^^ A(gk)\{gk}

is a sequence of continuous maps such that lim^^ p([g*|5], [r]) = 0}.

Proof. Let {gk] be a sequence of continuous maps for which o([g*l^]> [F]) -» 0

as A:-» +00. There exists a sequence of homeomorphisms {hk} of B such that

\\(gk\B) « hk-T\\B-*0a&k-+ +00. For each hk: 5-» B define Hk: D -► D by

#m-í|É|A*(lr'0'    €*0,* 10, £ = 0.

Since (gtl-ß) » Afc = (gfc » /ffc)|.B, we can use Theorem 3.1 and [1, §6.3] to conclude

A(fT) < lim k^x A(gk ° Hk) = lim^M A(gk).
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So A(fT) < inffJim^^ ^í(g*)|{g*} is a sequence of continuous maps such that

lim^^ p([gk\B], [T]) = 0}. To complete the proof apply Theorem 3.1 again.

3.3. Corollary. Let [T] be a Fréchet curve. Then

(\)A(fT) = A(fT) whenever T,, T2 G [T],

(2) A(fr) < inf{A(g)\ g is continuous with g\B E [r]}.

If [r] is a Jordan Fréchet curve in R", then it is known ([3] and [8]) that there is a

continuous surface a: D —> R" spanning T of least area in the class of continuous

surfaces spanning T. We prove below that the discontinuous map /r has Goffman-

Liu area equal to the Lebesgue area of this continuous surface a of least area.

3.4. Theorem. Suppose T is a closed Jordan curve. Then

A(fT) = min{^4(g)| g is continuous with g\B G [T]}

= min{yi(g)| g is continuous with g\B = T).

Proof. In view of Corollary 3.3(2) we may assume A(fT) < oo. The first equality

now follows from Theorem 3.2 and [6, Theorem 9.4.1].

To prove the second equality let a denote a continuous surface of least area with

a\B G [r]. In a straightforward manner one can define a continuous map a:

D -» R" such that d\B = T, 0(C) = o(2£) whenever 0 < |£| < 2"1 and A(a) = A(a).

4. Least area problem for linearly continuous maps. The problem of least area in

the class of linearly continuous maps is trivial as shown by the following theorem.

4.1. Theorem. For any continuous curve T: B —»R",

0 = min{^4(/)|//'i linearly continuous andf\B = T).

Proof. Consider the polar coordinates for the plane where the pole is a point on

B and the polar axis is the diameter of D passing through the pole. Define the

discontinuous map/>: D —» B by

(2 cos 9, 9),    if r ¥= 0,

Note that the location of the pole and polar axis yields the facts that p\B is the

identity on B and p(D) = B. If T: B -» R" is any continuous curve, define A/r:

D -» R" by the formula MT = T ° p. The map MT is linearly continuous and

MT\B = T. We will now demonstrate that A(MT) - 0.

Let (A', Y) be the natural rectangular coordinates associated with the polar

coordinates defined above. Thus, X = r cos 9 and Y = r sin 9. Then for each

positive integer k > 1, define/>¿: D -» D by

PÁX'Y)-[(k-\Y),     ifX<k\

Then the sequence {gk), where gk = T ° p ° pk, is a sequence of continuous maps

such that A(gk) = 0 and d(gk, MT) < 2(2*:"' - k~2)l/2. That A(gk) = 0 follows

from the fact that gk: D ->R" can be factored through the Jordan arc/? ° pk(D).
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The fact A(MT) = 0 now follows from the lower semicontinuity of the area

function.

Remarks. For further references to discussions of the class of linearly continuous

maps £ see [4] and [7].

The authors wish to acknowledge Professor H. Blaine Lawson, Jr. for some

helpful conversations and the referee for suggesting that we examine the least area

problem for linearly continuous maps.
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