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THE ORDER OF ENTIRE FUNCTIONS WITH RADIALLY

DISTRIBUTED ZEROS

FARUK F. ABI-KHUZAM

Abstract. It is shown that an entire function with radially distributed zeros has

finite order a if it has finite lower order /i. It is then shown that functions with real

negative zeros only are extremal for the problem of maximizing the Nevanlinna

characteristic in the class of entire functions satisfying A — p > 1.

Let X, p, p be the order, lower order and the exponent of convergence of the

zeros of an entire function /. Whittaker [8, p. 130] has shown that if p and p are

finite, then À is finite and X = max( p, p). The finiteness of p by itself, however, is

not enough to make X finite. It is a rather interesting fact, that a radial distribution

of the zeros of / makes X finite if p is finite. We point out that the theorem whose

statement constitutes the title of Whittaker's paper [8], is an immediate corollary of

earlier and more informative results of Edrei and Fuchs [2, p. 298], [3, pp. 261,

264].

Using rather difficult estimates of T(r, f), Edrei and Fuchs [2, p. 308] have

shown that q < p for a canonical product f of finite genus q ( > 1) having only real

negative zeros. Their result implies that q<p<X<q+lfor such functions

provided that À is assumed finite. Years later Shea [6, p. 204], in studying the

Valiron deficiencies of meromorphic functions, obtained as a corollary a bound on

X in terms of p only, for entire functions /having only real negative zeros and finite

order X.

Our first result (Theorem 1 below) generalizes the above results and the proof

extends to subharmonic (and 5-subharmonic) functions in space. In addition, our

proof may be of interest because of its simplicity.

Theorem 1. Let f be an entire function of order X and lower order p. Assume that

all the zeros off lie on the radii defined by

reia°, reiu>, . .., reia~        (r > 0, m > 0),

where the u's are real.

Then X is finite if and only if ¡i is finite.

If m = 0 and p is finite then X < [ p] + 1.

Entire functions whose zeros lie on a ray are believed to be extremal for a large

class of problems in Nevanlinna theory. Let / be entire with zeros {a„} and

nonintegral order X, and let F be the canonical product with zeros {-|a„|}. If
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0 < X < 1, then it is a consequence of Gol'dberg's lemma [4, p. 106] that T(r,f) <

T(r, F), but nothing is known if X > 1. In this direction the following result may be

of interest.

Theorem 2. Let f be entire of finite nonintegral order X and lower order p. If

X — p > 1, then there exists a sequence {xn} increasing to infinity and a positive y

(< I) such that

T(r,f)<T(r,F),        x] < r < xn. (1)

Connected to our Theorem 1 is the following unpublished result of I-Lok Chang.

Theorem A. Let f be entire f(0) = 1, and let {a.} be the sequence of its zeros. Take

N(r, \/f) to be the counting function that appears in Nevanlinna's theory.

Let k > 1 be an integer and let

SKI"* -+00. (2)
7-1

Consider the point-set

Ak = {z:\zrg zk\<ß<it/2), (3)

and let

2 KI-* <+<*>. (4)

Then, Nevanlinna's characteristic T(r, f) satisfies the relation

T(r,f)>2-N(r,\/f) + r-kn(r) (5)

with Q(r) —, + co as r —» + oo.

Since r~kT(r,f) always tend to a limit (possibly infinite) when 2jli|a,-|~* < + oo,

we may 'append' the obvious corollary of Theorem A to obtain

Theorem B. If f is an entire function satisfying (3) and (4) for some positive integer

k, and if T(r,f) is its Nevanlinna characteristic, then lim,^^ r'kT(r,f) exists as a

finite or infinite limit.

The next corollary shows the connection between Chang's result and Theorem 1.

Corollary of Chang's Theorem. Let f be an entire function having all its zeros

on the two rays

r, reinm/a        (r > 0, a ( > l), m integers).

If the lower order p off is finite, then its order X is finite and X < [ p] + 2a.

Proof of corollary. Let / satisfy the conditions of the corollary and suppose

first that m is even and has no common factors with a. Let A: be the (unique)

multiple of a in the set [ p] + 1, [ p] + 2, . . ., [ p] + a. Then all the zeros of / he in

A¿ and condition (4) of Theorem A is satisfied. By Theorem B the hmr_>00 r~kT(r, f)

exists. Since k > p, this limit must be finite. It follows that X < k and so X < k <

[ p] + a < [ p] + 2a. The case when m is odd may be proved similarly, but k must
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be taken to be a multiple of 2a. We remark that examples of Edrei and Fuchs [2, p.

295] show that the bound [ p] + a, obtained when m is even, is sharp. We also note

that, if instead of one ray, we have a finite number of rays of arguments mxit/ax,

m2it/a2, . . . , msit/as, then a function having all its zeros on these rays and having

lower order p will have order X bounded above by [ p] + 2 (lowest common

multiple of a„ a2, . . ., aj). We finally point out that the corollary may be proved

directly from Theorem A.

Proof of Theorem 2. Let / be of finite nonintegral order X, then N(r) =

N(r> 1//) nas order X. Then F has order X. By Theorem 1, the lower order p' of F

satisfies X — p' < 1 and so p < p'. Choose e ( > 0) so that p < p' — e and then

choose y such that n/(ii' — e) < y < 1. By Whittaker's Lemma [8, p. 130] there

exists a sequence {x„} increasing to infinity such that

7Y>,/) </•"'-<       (xj<r<x„). (6)

Since T(r, F) > r"'"e for all large r, (1) follows.

Proof of Theorem 1. Let / be an entire function satisfying the conditions of

Theorem 1 and assume that its lower order p is finite. We first show that the

condition of the theorem implies that the zeros of/are located in 'suitable' sectors.

This we do by following, step by step, an argument of Edrei, Fuchs and Hellerstein

[1, p. 149]. Consider the set of arguments w, and assume that u0 = 2tt; this is

clearly no restriction. Choose k (0 < k < m), and relabel if necessary, so that

{2it, w,.uk) is a maximal linearly independent set. If k < m, there exists

integers n¡ and a ( > 0) such that

k

ou, = 2itn,o + 2 niuj       (I = k + \, . . . , m). (7)
y=i

Put

M, = 2 l«j|.       M = sup{a, Mk + X, Mk+2, ..., Mm). (8)
y = i

By Weyl's equidistribution theorem [7], there exists a sequence {\} of positive

integers satisfying

Wwj - Lsj2it\ < ^   * (j = 1, 2, . . . , k; s = 1, . . . ; e > 0),      (9)

where the Lsj are integers.

Choose s0 so that oXs > p and put q = oXs. We are now ready to show that the

zeros of/lie in "suitable" sectors: In (9) take s = s0, multiply by |«,| and sum over

j from 1 to k. In view of (7) and (8) we get

Ahl2it
(I = k + 1, k + 2, . . . , m), (10)

(2 + e)q

where the A's are integers.

By (8) and (9), it is clear that (10) holds also for I = 1, 2, . . ., k, with Aw = oLM.

Hence we have

Aw2tt
<it/(2 + e)q       (l=l,2,...,m;q>n,h = s0).       (11)



74 F. F. ABI-KHUZAM

To continue we write log| f(rei0)\ = 2"__„cm(r)e,m9. Then we have [5, p. 379]

C^ ■ "¿i     2    (r/Z^m +  ^ &/>r) + (r/Ä)"0(7X2Ä)),    (12)

where {zk} are the zeros of /and r¿ = |rfc|.

In (12) we put m = q. Since q > p, the last term in (12) will tend to zero as

R —» oo through a suitable sequence {7?„}. It follows that 2r<r <Az¿* tends to a

limit as R (= Rn) tends to infinity. If we write zk = /¿e**, it follows that

Re{2r<rt<Az¿"*} = 2r</. <Ä/** cos(^) tends to a limit as 7? (= 7?„) tends to

infinity. Since the arguments 9k satisfy (11) we have cos(qit/(2 + e)q)2r<r <Rrj^

< 2r<, <Rrk~q cos(q9k). It follows that 2,<r <Krk~9 is bounded as 7? (= Rn) tends to

infinity, and being an increasing function of 7Î, it will have a limit as R —, oo

unrestricted. Thus 2/"^ converges and so, the exponent of convergence of the zeros

of/is < q. By Whittaker's result, X < max(p, q).

When the zeros of/ all lie on a ray, we may choose q = [p] + 1. Using this in

(22) we obtain p < [p] + 1 from which follows that X < [p] + 1. This completes

the proof of Theorem 1.

Proof of Theorem B. Let/be an entire function whose zeros satisfy (3) and (4)

for some integer s (> 1). If lim inf^^ r~sT(r,f) = oo then lim,.^ r~*T(r,f) = oo.

Suppose then that lim inf,.^^ r'"T(r,f) < + oo. Then the lower order p of / is

finite and p < s. In (12), take m = s and let 7? tend to infinity through a sequence

Rn such that R~sT(Rn,f) tends to a finite limit. By taking subsequences if necessary

and repeating the same arguments after (12), we conclude as before, that 2|a,|_i <

+ oo. It follows that/is of finite order X < s. Thus we may write/(z) = e^2)P(z)

where Q is a polynomial of degree d < s and P is a Weierstrass product of genus

s — I. Since for such products P, even when not canonical, T(r, P) = o(r') as

r -» oo, we conclude by the elements of the theory that lim,.^^ r~sT(r,f) exists and

is < +00. This completes the proof of Theorem B.

Remark. The possibility that T(r, f) < T(r, F) for a set that contains arbitrarily

large values of r is further supported by the following: Let

f(z) = e"^ fi e(z/zn, q)    and   F(z) = e'<*> 5 E(z/-\zn\, q)
n—\ n"1

be two entire functions, with p(z) = a0 + axz + ■ ■ ■ +aqzq, and P(z) = \a0\

+ ■ • ■ +\aq\z9 and q = the greatest integer less than or equal to the order X of /

which we assume finite. Then we have [5, p. 380]

\cm(r; f)\ < \cm(r; F)\ < 2T(r, F) - iv(r, 1),    for all m. (13)

In the proof of the approximation lemma of Edrei and Fuchs [2, p. 312] we apply

inequality (13) in place of their inequality (8.8). The result is that in the error term

appearing in their lemma, we may replace T(r, f) by T(r, F).

In ending this paper I wish to thank the referee for pointing out the existence of

Chang's result and its connection to Theorem 1.
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