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SCHWARZ REFLECTION PRINCIPLES FOR

SOLUTIONS OF PARABOLIC EQUATIONS1

DAVID COLTON

Abstract. A reflection principle is obtained for solutions of the heat equation

defined in a cylindrical domain of the form Q x (0, 7") where Q is a ball in R" and

the solution vanishes on 9Q x (0, T). It is shown that the domain of dependence of

the solution at a point outside the cylinder il x (0, T) is a line segment contained

inside Ü X (0, 7"). In the case n = 2 this result is generalized to the case of analytic

solutions of parabolic equations with analytic coefficients defined in an arbitrary

bounded simply connected cylinder D x (0, 7") where the solution vanishes on a

portion of dD X (0, T).

I. Introduction. A classical result in potential theory is the Schwarz reflection

principle for solutions of Laplace's equation which vanish on a portion of a plane

or sphere. In particular if m is a solution of

A„M = 0 (1.1)

defined for xx > 0, x = (xx, . . . , xn) E R", and satisfying the boundary condition

t/(0, x2, . . . , x„) = 0, (1.2)

then m can be continued across xx = 0 by the formula

u(-xx, x2,..., xn) = -u(xx, x2,..., xn), (1.3)

whereas if m is a solution of (1.1) defined for |x| < a and vanishing on a portion o

of the sphere r = \x\ = a then u can be continued across a by the formula

u(r,9) = -[iy\(^,9} (1.4)

where (r, 9) = (r,9x, . . . ,9n_x) are spherical coordinates. Both of these results can

easily be verified by observing that (1.3) and (1.4) both serve to define a harmonic

function in the original domain of definition of u together with its "reflection" in

such a way that u is continuously differentiable across the common boundary of

these domains. Hence u is in fact harmonic in the union of these two domains and

their common boundary and by Holmgren's uniqueness theorem [3] this continua-

tion is unique.

It is the purpose of this note to extend the above reflection principles to the case

of parabolic equations, in particular for the heat equation

A„u = u, (1.5)

defined in a cylindrical domain of the form ß X (0, T) where T > 0 and 9ß either
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contains a portion of the plane xx = 0 on which u vanishes for 0 < t < T, or ß is a

ball and u vanishes on 9ß X (0, T). The first problem is trivial since in this case u

can be continued by the reflection formula

u(-xx, x2, . . ., x„, t) = -u(xx, x2,.. ., x„, t), (1.6)

the proof being identical to that for Laplace's equation. The case when ß is a ball is

more difficult since a reflection formula analogous to (1.4) no longer defines a

solution of the heat equation for r > a, and hence a new reflection formula must be

derived. This we shall do in §111 of this note, basing our result on a new class of

integral representations for solutions of the heat equation developed in §11. In §IV

we shall indicate how our results can be considerably generalized in the case when

n = 2. A noteworthy result of this analysis is that the domain of dependence of the

value of a solution of the heat equation at a point outside the cylinder ß X (0, T) is

a line segment contained inside ß X (0, T). This is in contrast to the reflection rule

(1.4) for solutions of Laplace's equation, where the domain of dependence is simply

the image point under the Kelvin inversion (1.4).

We note that if ß is the ball {x: |x| < a) and « is a solution of (1.5) in

fi X (0, T), continuous in ß X (0, T), and vanishing on 9ß X (0, T), then m is an

analytic function of x and t in ß X (0, T) [2, p. 212]. Hence without loss of

generality we can restrict our attention to analytic solutions of the heat equation.

II. Integral representations of solutions to the heat equation in a cylinder. Let

ß = {x: |x| < a} and u a solution of (1.5) in ß X (0, T) such that u is continuous in

ß X (0, T) and vanishes on 9ß X (0, T). We shall show that there exists a kernel K

and harmonic function h depending analytically on a parameter t, defined in

ß \ {0} X (0, T), and vanishing on 3ß X (0, T), such that in the punctured cylinder

ß \ {0} X (0, T) u can be represented in the form

u(r, 9, t) = (I + T)/i

= h(r, 9,t) + ^-.6 [rs"-3K(r, s, t - r)h(s, 9, t) ds dr,  (2.1)
lltl J],-T\ = 8Ja

where 8 > 0 is arbitrarily small. Indeed, substituting (2.1) into (1.5) and integrating

by parts shows (see the Appendix) that u will be a solution of (1.5) in ß \ {0} X

(0, T), vanishing on 3ß X (0, T), provided K(r, s, t) satisfies the differential equa-

tion

TC + ^-TC -s2 Ik = r% (2.2)

and the initial conditions

K(r, a, t) = 0, (2.3a)

K(r, r, t) = r2~n(r2 - a2)/4t2. (2.3b)

To establish the existence of the operator I + T we now show that an (analytic)

solution of (2.2), (2.3) exists for 0<r<s< a, a<s<r< oo, and |f| > 0. To this

end we make the change of variables

$=Vn,       t, = \lr/s (2.4)
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and reduce the initial value problem (2.2), (2.3) to

M   — (vM = 0 (2.5)

M(ai), t,, t) = 0, (2.6a)

M(S, 1, r) = tt2 - a2)/4t2 (2.6b)

where

A/(f, n, t) = r-2K(£-n, S/% t), (2.7)

and look for a solution of (2.5), (2.6) for |/| > 0 and (f, rj) in the shaded region of

Figure 1 below.

Figure 1

We seek a solution of (2.5), (2.6) in the form

*«,%«)- I ^ü,*+! (2.8)
*-i    r

where the aw are to be determined, and find that for (2.8) to be a solution of (2.5),

(2.6) the a(k) must satisfy the recursion scheme

a(1)=|tt2-«¥);

a$ = -k^k~x\       k>2;

a(*>(f, 1) = a<*)(fln, n) - 0,       * > 2.

Hence

(2.9)

a^tt, i?) = -k C ( V*-l)(o, p) ap da ¿p,       A: > 2, (2.10)

and due to the double integral appearing in (2.10) we can conclude that a(k) =

0(\/k\), thus implying that (2.8) is convergent for |i| > 0 and (f, r/) in the shaded

region of Figure 1. It is an easy matter to verify the analyticity of M and the fact

that (2.8) indeed defines a solution of (2.5), (2.6). Thus we have established the

existence of the operator I + T.

The above analysis shows that (I + T)h defines an analytic solution of the heat

equation in ß \ {0} X (0, T) vanishing on 3ß X (0, T). It remains to be shown that
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any such u can be represented in this form, and to this end we construct an integral

representation for the inverse operator (I + T)"1. In particular we look for a kernel

E such that
h(r,9,t) = (l + T)-xu

= u(r,9,t)+^-.6 fs"-3E(r, s, t - t)u(s, 9, t) ds dr      (2.11)
¿™ J\t-T\-SJa

where h and u are defined as before. Substituting (2.11) into Laplace's equation

(1.1) and integrating by parts shows that h will be a solution of (1.1) in ß \ {0} X

(0, T) (depending analytically on the parameter t) and vanishing on 3ß X (0, T)

provided E(r, s, t) satisfies the differential equation

n - 1
E..+

1
= -s2E,

and the initial conditions

E(r, a, t) = 0,

E(r, r, t) = -r2-"(r2 - a2)/4t2.

Making the change of variables (2.4) shows that

M(S, tj, t) = r~2E(Cv, S/V, t)

satisfies the initial value problem

"h + A/, =0,

(2.12)

(2.13a)

(2.13b)

(2.14)

(2.15)

M(at], tj, t) = 0, (2.16a)

A/if, 1, t) = - (J2 - a2)/4t2, (2.16b)

and the existence of a solution to this problem follows in the same manner as that

of (2.5), (2.6). The fact that the operator defined by the right hand side of (2.11) is

indeed (I + T)"1 follows from the fact that the initial conditions (2.3a) and (2.13a)

imply that hr(a, 9, t) = ur(a, 9, t), i.e. h and u have identical Cauchy data on r = a.

Hence if A is defined by (2.11) for a given u satisfying the heat equation in

ß X (0, T) and vanishing on 3ß X (0, T), then by Holmgren's uniqueness theorem

u has the representation (2.1). We have now established the existence of the

operator (I + T)"1.

III. The Schwarz reflection principle for the heat equation. We are now in a

position to prove the following theorem.

Theorem. Let ß = (x: |x| < a), T > 0, and u a solution of the heat equation (1.5)

in ß X (0, T) such that u is continuous in ß X (0, T) and vanishes on 3ß X (0, T).

Then u can be uniquely continued as a solution of the heat equation into all of

R" X (0, T) where the domain of dependence of u at the point (r, 9, t)for r > a is the

line segment joining (a2/ r, 9, t) to (a, 9, t).

Proof. Define the harmonic function h depending analytically on the parameter

t by

h = (I + TF «. (3.1)



SCHWARZ REFLECTION PRINCIPLES 91

Then, for each fixed /, h is harmonic in ß \ {0}, continuous in ß \ {0} and satisfies

h(a, 9, t) = 0. (3.2)

Hence from (1.4) h can be continued across r = a by the formula

h(r,9,t) = -(l)"~2h^,9,t)j, (3.3)

and this continuation clearly preserves the analytic dependence of h on the

parameter /. The fact that « can be continued into all of R" X (0, T) now follows

from (3.3), the regularity of the kernel K, and the representation (2.1). Indeed, (2.1),

(2.11) and (3.3) can be combined together to provide a specific "reflection formula"

for this continuation. In particular it follows from (2.1), (2.11) and (3.5) that the

value of w at a point (r, 9, t) outside the cylinder ß X (0, t) depends continuously

on the value of u and its derivatives with respect to time along the line segment

joining (a2/r, 9, t) to (a, 9, t) (see Figure 2).

(r,6,t).-

Domain of dependence

of u(r,9,t)

(X-i . • . / x )

Figure 2

IV. Remarks on the case of two space variables. In the case of two space variables

the above results can be considerably generalized. In particular consider the

parabolic equation

A2u + a(x,y, t)ux + b(x,y, t)uy + c(x,y, t)u = d(x, y, t)u, (4.1)

defined in a cylinderical domain D X (0, T) where D is a bounded simply

connected domain such that u vanishes on a portion o of 37) X (0, T) and the

coefficients of (4.1) are assumed to be analytic functions of their independent

variables in a sufficiently large domain. By the use of a conformai mapping we can

assume without loss of generality that a is a portion of the (y, t) plane and we

make the assumption that u is an analytic function of x, y and t in D X (0, T). In

order to continue « across o into the mirror image of D X (0, T) we modify
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Garabedian's proof of the reflection principle for elliptic equations in two indepen-

dent variables [3, §16.4]. The first step in this approach is to keep t = t0 E (0, T)

fixed and x = xx real, but allow y = y, + iy2 to be complex and to continue u off

the real domain into the wedge -x, < y2 < xx, xx > 0, where y, appears merely as

a parameter. This continuation can be found by solving the Cauchy problem

■ ~ "W, + a"*, ~ ibuyi + cu = du„

u(xx,yx,0, t) = u(xx,yx,t),

uy^xx,yx, 0, t) = iuy¡(xx,yx, t).

(4.2a)

(4.2b)

The solution to initial value problems of this type was discussed in [1], and, under

the assumption that u is an analytic function of t, it follows from this analysis that

a solution to (4.2a), (4.2b) can be found by successive approximations for -x, < y2

< x„ \t — t0\ < 8, where 8 > 0. The next step is to solve a Goursat problem for

(4.2a) on each of the angular regionsy2 > xx > 0 andy2 < -x, < 0 (see Figure 3).

Cauchy
problem

Goursat problem

Cauchy problem

Figure 3

The solution to these problems can again be obtained by successive approxima-

tions [1]. We can now determine ux (0, yx,y2, t) and, following the analysis of

Garabedian, show that this function is analytic for \t — i0| < 8 andy, + iy2 in D

(where D is now considered as a domain in the complex plane). The final step is to

continue u across o by using the boundary condition u(0,yx,y2, t) = 0 and solving

a Cauchy problem for (4.2a) with data prescribed on the plane x, = 0. This now

provides a continuation of u into the mirror image of D X (0, T) with respect to a,

except for those points which cannot be reconnected to o by perpendicular line

segments. Note that the domain of dependence of a point in the mirror image is a

line segment in D X (0, T) joining the image point to o. For more details of the

above continuation procedure we refer the reader to the proof for the time

independent case in [3].
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We note that under the assumption that u can indeed be continued across o (the

proof of which is outlined above), explicit reflection formulas can be obtained by

using the approach developed by Hill in [4].

Appendix. We show here that under the assumptions (2.2), (2.3) we have that

(2.1) defines a solution of (1.5). In spherical coordinates (1.5) has the form

32w      n - 1 3«       1

L^^~dr2' + ~T "3r+7A""

3m

dt

where A is an operator depending only on the angular coordinates (cf. [5, p. 293]).

Hence from (2.1), (2.3b) we have

d2K      n - 1 37C      dK
+-

gr2 r      dr        dt

(n - 1)(1 - a2/r2) + (1 + a2/r2)

4(t - t)2

r — a2/r
— (r, 9, r) dt
dr

2m J\,-T\-

¿i"y\t-r\-8[4(t - t)

+ -J-r6 r"-3Kr(r, r, t - r)h(r, 9, r) dr
litt J\t-r\-S

+ —^-r6 Cs"~3K(r, s, t - r)Ah(s, 9, r) ds dr
2mr  •'\t-T\ — s-'a

But integrating by parts and using (2.3a) gives

—Î— 6 (rsn-3K(r,s,t-T)Ah(s,9,r)dsdT
2mr2 J\t-T\ = 8Ja

h(s, 9, t) ds dt

h(r, 9, r) dr

(1)

X—6 Cs"-3K(r,s,t-r)
rir1 •r\t-r\ = SJa

13 h      , ,..
s2—- + (n - lis

3í2

r - a2/i

2mr2J\t-r\

2™%-r\-8[   4(t - tf

2ot7|,_t|_s ds

dh

ds
ds dr

£<iv«.t)*

mr J\t-T\ = sJa

n-3

2mr2 T\t-r\

From (2.3b) we have

-, 3 K     ,        ,.   dK
y2—- + (n - \)s-r-

ds2 as
h(s, 9, r) ds dr.  (2)

dK
r     37(r^',) =

_ (4 - n) - (2 - n)a2/
2 1.1

4t2
— r n-3™jpir.r.t). (3)
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Putting (1), (2) and (3) together gives, using (2.2),

dh

Ittr    J\t-r\-SJa

,n-3 ,d2K dK

drJ + (» - »'ITdr

,d2K

ds2

, .   dK       2dK
/t(i, 0, r) ds dr

+ ^-6 -l-—h(r,9,r)dr=0

which is the desired result.
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