MULTIPLES OF WEIERSTRASS POINTS AS SPECIAL DIVISORS

R. F. LAX

ABSTRACT. Complex spaces \mathfrak{V}_n of Weierstrass points are isomorphic to the intersection, on the *n*th symmetric product of the universal curve over the Teichmüller space, of complex spaces \mathfrak{I}_n' of special divisors with the diagonal Δ_n consisting of divisors which are multiples of a point. The tangent space at a point of this intersection is described and it is shown that $\mathfrak{I}_n^1 - \mathfrak{I}_n^2$ and Δ_n intersect transversally.

Let $T = T_g$ denote the Teichmüller space for Teichmüller surfaces of genus g > 1 and let $\pi: V \to T$ denote the universal curve of genus g. Denote by $V_T^{(n)}$ the nth symmetric product of V over T. Let \mathcal{G}_n^r denote the closed complex subspace of $V_T^{(n)}$ whose points are divisors of degree n and projective dimension at least r (see [3], [2]). We have proved

THEOREM 1 ([3]). Suppose $n \le g$. Then $\mathcal{G}_n^1 - \mathcal{G}_n^2$ is smooth of pure dimension 2n + 2g - 4.

For $2 \le n \le g$, let \mathfrak{M}_n^r denote the closed complex subspace of V consisting of those $(t, P) \in V$ such that there are at least r gaps less than or equal to n in the Weierstrass gap sequence at P on V_t . These spaces were introduced in [4] and, by employing methods similar to those used in the proof of Theorem 1, we proved

THEOREM 2 ([4]). For $2 \le n \le g$, $\mathfrak{V}_n^1 - \mathfrak{V}_n^2$ is smooth of pure dimension n + 2g - 3.

In this note, we describe the relationship between the \mathcal{G}_n^r and the \mathcal{W}_n^r and show how Theorem 2 may be derived in a direct fashion from Theorem 1.

Let Δ_n denote the image of δ_n : $V \to V_T^{(n)}$, the closed immersion which takes a point (t, P) to the point (t, nP). The following proposition follows easily from the definitions.

Proposition 1. For $2 \le n \le g$.

$$\delta_n|_{\mathfrak{W}_n}\colon \mathfrak{W}_n \xrightarrow{\widetilde{\Delta}} \mathfrak{G}_n' \cap \Delta_n.$$

We now explicitly consider the intersection of \mathcal{G}_n^r and Δ_n . Suppose $(t, nP) \in \mathcal{G}_n^r \cap \Delta_n$. Put $X = V_t$. Let z be a local coordinate on X centered at P and let z_1, \ldots, z_n denote n copies of z. Let $\sigma_1, \ldots, \sigma_n$ denote the n elementary symmetric functions in z_1, \ldots, z_n . Let c_1, \ldots, c_{3g-3} denote Patt's local coordinates on T

Received by the editors May 8, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 32G15, 14H15.

Key words and phrases. Complex space, Weierstrass point, special divisor, Teichmüller space, universal curve.

96 R. F. LAX

centered at t (see [8]). Then $c_1, \ldots, c_{3g-3}, \sigma_1, \ldots, \sigma_n$ are local coordinates on $V_T^{(n)}$ centered at (t, nP). Put

Z =tangent space to $V_T^{(n)}$ at (t, nP);

 $Z_1 =$ tangent space to \mathcal{G}_n^r at (t, nP);

 Z_2 = tangent space to Δ_n at (t, nP).

We describe coordinates for Z. Suppose $\xi \in Z$. We may view ξ as a C-homomorphism of local rings

$$\xi \colon \mathcal{O}_{V(r),(t,nP)} \to \mathbb{C}[\varepsilon]/(\varepsilon^2)$$

(cf. [6, p. 332]). Then ξ is determined by its values on a set of local parameters of $\emptyset_{V_{2}^{(n)},(t,nP)}$. So, if $\xi(c_m) = b_m \varepsilon$, $m = 1, \ldots, 3g - 3$, and $\xi(\sigma_i) = u_i \varepsilon$, $i = 1, \ldots, n$, then $(u_1, \ldots, u_n, b_1, \ldots, b_{3g-3})$ serve as coordinates for Z.

PROPOSITION 2. $\xi = (u_1, \ldots, u_n, b_1, \ldots, b_{3g-3})$ is in \mathbb{Z}_2 if and only if $u_2 = u_3 = \cdots = u_n = 0$.

PROOF. Suppose $(t_1, Q_1 + \ldots + Q_n) \in V_T^{(n)}$ is a point near (t, nP). Then $(t_1, Q_1 + \cdots + Q_n) \in \Delta_n \Leftrightarrow z(Q_1) = \cdots = z(Q_n) = z_0 \Leftrightarrow z_0$ is an *n*-fold root of

$$F(Y) = \prod_{i=1}^{n} (Y - z(Q_i)) = Y^n - \sigma_1(z(Q_1), \dots, z(Q_n)) Y^{n-1}$$

$$+ \dots + (-1)^n \sigma_n(z(Q_1), \dots, z(Q_n))$$

$$\Leftrightarrow F(z_0) = F'(z_0) = \dots = F^{(n-1)}(z_0) = 0$$

$$\Leftrightarrow \sigma_k(z(Q_1), \dots, z(Q_n)) = \binom{n}{k} [\sigma_1(z(Q_1), \dots, z(Q_n))]^k / n^k$$
for $k = 2, 3, \dots, n$

and $\sigma_1(z(Q_1),\ldots,z(Q_n))=nz_0$.

So, near (t, nP), Δ_n is defined by the equations $\{\sigma_k = \binom{n}{k}\sigma_1^k/n^k\}$, $k = 2, \ldots, n$. Thus ξ is tangent to Δ_n at (t, nP) if and only if $\xi(\sigma_k) = 0$ for $k = 2, 3, \ldots, n$.

We next recall the description of Z_1 , which was given in [3]. Let $1, \gamma_2, \ldots, \gamma_g$ denote the Weierstrass gaps at $P \in X$. Choose a basis of holomorphic 1-forms $d\zeta_1, \ldots, d\zeta_g$ on X such that $\operatorname{ord}_P d\zeta_j = \gamma_j - 1$. Write

$$d\zeta_j = \sum_{i=0}^{\infty} a_{i,j} z^i dz.$$

For details concerning the following result, we refer the reader to [3].

PROPOSITION 3. Suppose $n \le g$ and $\xi \in \mathbb{Z}$. Then $\xi \in \mathbb{Z}_1$ if and only if all minors of order n-r+1 of the matrix

$$\mathfrak{N} = \begin{bmatrix} (-1)^{i} a_{i,j} & & & & & & & & \\ (-1)^{i} a_{i,j} & & & & & & & \\ & & & & & & & \\ i = 0, \dots, n-1 & & & & & & \\ j = 1, \dots, n-r & & & & & & \\ \end{bmatrix} \begin{bmatrix} \sum_{l=1}^{n} (-1)^{i+l-1} a_{i+l} u_l + \sum_{m=1}^{3g-3} \tau'_{P,i}(Q_m) \zeta'_j(Q_m) b_m \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{bmatrix}$$

vanish, where $\tau_{P,k}$ is an elementary integral of the second kind on X with pole of order k+1 at P and where (Q_1, \ldots, Q_{3g-3}) is any point chosen from an open subset of X^{3g-3} .

Now, suppose $(t, nP) \in \mathcal{G}_n^r - \mathcal{G}_n^{r+1}$, $n \leq g$. Then \mathfrak{M} will have a nonzero minor of order n-r, call it μ , and in order that all minors of order n-r+1 of \mathfrak{M} vanish, it is sufficent that those minors of order n-r+1 which contain μ should vanish. This gives rise to r(g-n+r) linear equations $\{E_k\}$ in $u_1, \ldots, u_n, b_1, \ldots, b_{3g-3}$. These equations are of the form

$$E_k: \sum_{l=1}^n e_{k,l}u_l + \sum_{m=1}^{3g-3} \alpha_k(Q_m)b_m = 0,$$

where the α_k are (not necessarily finite) quadratic differentials on X. (The α_k arise from the products $d\tau_{P,i}d\zeta_i$ which appear in \mathfrak{R} -see [3].)

THEOREM 3. Suppose $n \le g$, $r(g-n+r) \le 3g-3$, and $(t, nP) \in \mathcal{G}_n^r - \mathcal{G}_n^{r+1}$. If the above α_k , $k = 1, \ldots, r(g-n+r)$, are linearly independent quadratic differentials, then:

- 1) dim $Z_1 = 3g 3 + (r + 1)(n r) rg + r$ and \mathcal{G}_n^r is smooth at (t, nP).
- 2) dim $Z_1 \cap Z_2 = 3g 2 r(g n + r)$ and \mathcal{G}_n^r and Δ_n intersect transversally at (t, nP).

PROOF. One may show, as in [3], that if the α_k are linearly independent, then since (Q_1, \ldots, Q_{3g-3}) is any point from an open subset of X^{3g-3} , the matrix $[\alpha_k(Q_m)], k = 1, \ldots, r(g-n+r)$ and $m = 1, \ldots, 3g-3$, will have maximum rank. It then follows that the systems of equations which define Z_1 and $Z_1 \cap Z_2$ will have maximum rank, establishing the theorem.

We showed in [3] that at least g - n + r of the α_k are linearly independent. In particular, if r = 1, then all the α_k are linearly independent. As a consequence we have

THEOREM 4. Suppose $(t, nP) \in \mathcal{G}_n^r - \mathcal{G}_n^{r+1}$, n < g. Then

- (1) dim $Z_1 \le 2g + 2n r 3$; in particular, if r = 1, then dim $Z_1 = 2g + 2n 4$ and \mathcal{G}_n^1 is smooth at (t, nP).
- (2) dim $Z_1 \cap Z_2 \le 2g + n r 2$; in particular, if r = 1, then dim $Z_1 \cap Z_2 = 2g + n 3$ and \mathcal{G}_n^1 and Δ_n intersect transversally at (t, nP).

COROLLARY. For $n \leq g$,

- (1) dim $\mathcal{W}_n \leq 2g + n r 2$;
- (2) $\mathfrak{V}_n^1 \mathfrak{V}_n^2$ is smooth of pure dimension 2g + n 3.

REMARKS. (1) The smoothness of $\mathcal{G}_n^1 - \mathcal{G}_n^2$ has also recently been demonstrated by Arbarello-Cornalba [1] and Namba [7].

- (2) Arbarello-Cornalba [1] have shown that $\mathcal{G}_n^2 \mathcal{G}_n^3$ is smooth, but it does not necessarily follow that the α_k are then linearly independent or that this space intersects Δ_n transversally.
- (3) In [5], we defined \mathfrak{W}_n for n > g. The points of this space are those $(t, P) \in V$ such that there are at least r gaps greater than n in the gap sequence at $P \in V_t$. We showed that for n > g, $\mathfrak{W}_n^1 \mathfrak{W}_n^2$ is smooth of pure dimension 4g n 3. This result can also be obtained as above by considering the intersection of \mathfrak{G}_n^r and Δ_n for n > g, but we note that, by our definition of \mathfrak{W}_n^r , for n > g, $\mathfrak{W}_n^r = \delta_n^{-1}(\mathfrak{G}_n^{n-g+r})$.

R. F. LAX 98

REFERENCES

- 1. E. Arbarello and M. Cornalba, Su una congettura di Petri, Comment Math. Helv. (to appear).
- 2. R. C. Gunning, Lectures on Riemann surfaces: Jacobi varieties, Princeton Univ. Press, Princeton, N. J., 1972.
- 3. R. F. Lax, On the dimension of varieties of special divisors, Trans. Amer. Math. Soc. 203 (1975), 141-159.
 - 4. _______, Weierstrass points of the universal curve, Math. Ann. 216 (1975), 35–42.
 5. ______, Gap sequences and moduli in genus 4, Math. Z. 175 (1980), 67–75.
- 6. D. Mumford, Introduction to algebraic geometry (preliminary version of first 3 chapters), Harvard notes.
- 7. M. Namba, Families of meromorphic functions on compact Riemann surfaces, Lecture Notes in Math., vol. 767, Springer-Verlag, Berlin, 1979.
 - 8. C. Patt, Variations of Teichmüller and Torelli surfaces, J. Analyse Math. 11 (1963), 221-247.

DEPARTMENT OF MATHEMATICS, NORTHEASTERN UNIVERSITY, BOSTON, MASSACHUSETTS 02115

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA (CUTTENT address)