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MULTIPLES OF WEIERSTRASS POINTS AS SPECIAL DIVISORS

R. F. LAX

Abstract. Complex spacss eVS'n of Weierstrass points are isomorphic to the

intersection, on the nth symmetric product of the universal curve over the

Teichmüller space, of complex spaces §¡, of special divisors with the diagonal A„

consisting of divisors which are multiples of a point. The tangent space at a point

of this intersection is described and it is shown that Q\ — 9* and A„ intersect

transversally.

Let T = Tg denote the Teichmüller space for Teichmüller surfaces of genus

g > 1 and let it : V —, T denote the universal curve of genus g. Denote by V^n) the

nth symmetric product of V over T. Let %rn denote the closed complex subspace of

F^n) whose points are divisors of degree n and projective dimension at least r (see

[3], [2]). We have proved

Theorem 1 ([3]). Suppose n < g. Then §xn — §2 is smooth of pure dimension

2n + 2g - 4.

For 2 < n < g, let sliSrn denote the closed complex subspace of V consisting of

those (/, P) E V such that there are at least r gaps less than or equal to n in the

Weierstrass gap sequence at F on V,. These spaces were introduced in [4] and, by

employing methods similar to those used in the proof of Theorem 1, we proved

Theorem 2 ([4]). For 2 < n < g, %x„ — 6¡£2I is smooth of pure dimension n + 2g

In this note, we describe the relationship between the %rn and the 6HSrn and show

how Theorem 2 may be derived in a direct fashion from Theorem 1.

Let A„ denote the image of 8n: F—» VjP, the closed immersion which takes a

point (t, P) to the point (t, nP). The following proposition follows easily from the

definitions.

Proposition 1. For 2 < n < g,

We now explicitly consider the intersection of @rn and A„. Suppose (t, nP) E

§rn n A„. Put X = Vt. Let z be a local coordinate on X centered at P and let

zx, . . . ,zn denote n copies of z. Let ox, . . . ,on denote the n elementary symmetric

functions in z,, . . . , z„. Let c„ . . . , c3g_3 denote Patt's local coordinates on T
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centered at / (see [8]). Then cx, . . ., c3g_3, ox,. . ., on are local coordinates on F^n)

centered at (t, nP). Put

Z = tangent space to V^n) at (/, nP);

Z, = tangent space to @rn at (f, nP);

Z2 = tangent space to A„ at (t, nP).

We describe coordinates for Z. Suppose £ E Z. We may view £ as a C-homomor-

phism of local rings

^.evVut,nP)^C[e]/(e2)

(cf. [6, p. 332]). Then £ is deterrnined by its values on a set of local parameters of

®v)r\(t,npy So> if ¿(O = bme> m= I, . . . ,3g - 3, and £(<x,) = «**. ' " 1.».

then (ux, . .., un, bx, ..., b3g_3) serve as coordinates for Z.

Proposition 2. £ = (ux, . . . , un, bx, . . ., b3g_3) is in Z2 if and only if u2 = u3

= • • • = u  =0.

Proof. Suppose (r„ Qx + . . . + Q„) E F}n) is a point near (t, nP). Then (/„ Qx

+ ■ ■ ■ + Qn) E A„ <=> z(Qx) = • • • = z(Qn) = z0<*>z0 is an «-fold root of

F(Y) = JJ (F - z(ß,)) = F" - a,(z(e,), . . . , z(ß„))F"
i=i

+ + (-l)\(z(o,),..>z(ß„))

^ F(z0) = F'(z0) = • • • = FC-xKz0) = 0

<^ a,(z(ß,), . . . , z(Q„)) = ( ^)[a,(z((2,),. . . , z(Q„))]k/nk

fork = 2,3, ... ,n,

and a,(z(Ö,),.. ., z(Qn)) = «z0.

So, near (t, nP), A„ is defined by the equations {ok = ("k)ox/nk}, k = 2, . . . , n.

Thus £ is tangent to A„ at (t, nP) if and only if £(ok) = 0 for k = 2, 3,. . ., n.

We next recall the description of Z„ which was given in [3]. Let 1, y2, . . ., yg

denote the Weierstrass gaps at P E X. Choose a basis of holomorphic 1-forms

d$x, ■ . ■, d£g on X such that ord^ d^ = y, - 1. Write

d£j = S  aijz' dz.
i = 0

For details concerning the following result, we refer the reader to [3].

Proposition 3. Suppose n < g and £ E Z. Then | E Z, if and only if all minors of

order n — r + 1 of the matrix

911 =
H)'«,,,

i = 0,. . . , n - 1

j = 1,. . ., n - r

n 3g-3

2 (-1)'+/A+/"/+   2  ri-AOJSJiQjb,,
/=-l m = l

/ = 0, . . . , n - 1

j = n - r + 1, . . g

vanish, where rP k is an elementary integral of the second kind on X with pole of order

k + 1 at P and where (Qx, . . . , Ö3g-3) ,Ä any point chosen from an open subset of

x3*-3.
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Now, suppose (r, nP) E @rn — §r„+x, n < g. Then 911 will have a nonzero minor

of order n — r, call it p, and in order that all minors of order n — r + 1 of 9H

vanish, it is sufficent that those minors of order n — r + 1 which contain p should

vanish. This gives rise to r(g — n + r) linear equations {74} in «,,..., un,

bx, . . . , b3g_3. These equations are of the form

n 3g-3

Ek:  S   eklu. +   y\    ak(Qm)b„ = 0,
/= 1 m= 1

where the ak are (not necessarily finite) quadratic differentials on X. (The ak arise

from the products drPid^ which appear in 91L-see [3].)

Theorem 3. Suppose n < g, r(g - n + r) < 3g - 3, and (t, nP) E §r„ - §r„+x. If

the above ak, k = 1, . . ., r(g — n + r), are linearly independent quadratic differen-

tials, then:

1) dim Zx = 3g - 3 + (r + l)(n - r) - rg + r and @r„ is smooth at (t, nP).

2) dim Z, n Z2 = 3 g — 2 — r(g — n + r) and §rn and A„ intersect transversally

at (t, nP).

Proof. One may show, as in [3], that if the ak are linearly independent, then

since (Qx, . . ., Q3g-}) is any point from an open subset of X3*-3, the matrix

[otk(Qm)], k = 1, . . . , r(g — n + r) and m = 1, . . ., 3g — 3, will have maximum

rank. It then follows that the systems of equations which define Z, and Z, n Z2

will have maximum rank, establishing the theorem.

We showed in [3] that at least g — n + r of the ak are linearly independent. In

particular, if r = 1, then all the ak are linearly independent. As a consequence we

have

Theorem 4. Suppose (t, nP) E §rn - §rn+x,n < g. Then

(1) dim Z, < 2g + 2n — r — 3; in particular, if r = 1, then dim Zx = 2g + 2n —

4 and §x„ is smooth at (t, nP).

(2) dim Z, n Z2 < 2g + n — r — 2; in particular, if r = 1, then dim Z, n Z2 =

2g + n — 3 and @x„ and An intersect transversally at (t, nP).

Corollary. For n < g,

(1) dim <3l$; < 2g + n - r - 2;

(2) ^l — 6l\S2l is smooth of pure dimension 2g + n — 3.

Remarks. (1) The smoothness of §xn — §2 has also recently been demonstrated

by Arbarello-Cornalba [1] and Namba [7].

(2) Arbarello-Cornalba [1] have shown that §2 — @3 is smooth, but it does not

necessarily follow that the ak are then linearly independent or that this space

intersects A„ transversally.

(3) In [5], we defined ^ for n > g. The points of this space are those (/, P) E V

such that there are at least r gaps greater than n in the gap sequence at F S Vr We

showed that for n > g, G¡¡S1n — G!iS2, is smooth of pure dimension 4g — n — 3. This

result can also be obtained as above by considering the intersection of §r„ and A„

for n > g, but we note that, by our definition of W,,, for n> g,<Wn = 8-x(§^~g+r).
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