MULTIPLES OF WEIERSTRASS POINTS AS SPECIAL DIVISORS

R. F. LAX

Abstract

Complex spacss \mathcal{W}_{n} of Weierstrass points are isomorphic to the intersection, on the nth symmetric product of the universal curve over the Teichmüller space, of complex spaces ${G_{n}}_{n}^{r}$ of special divisors with the diagonal Δ_{n} consisting of divisors which are multiples of a point. The tangent space at a point of this intersection is described and it is shown that $\mathcal{G}_{n}^{1}-\mathcal{G}_{n}^{2}$ and Δ_{n} intersect transversally.

Let $T=T_{g}$ denote the Teichmüller space for Teichmüller surfaces of genus $g>1$ and let $\pi: V \rightarrow T$ denote the universal curve of genus g. Denote by $V_{T}^{(n)}$ the nth symmetric product of V over T. Let \mathcal{G}_{n}^{r} denote the closed complex subspace of $V_{T}^{(n)}$ whose points are divisors of degree n and projective dimension at least r (see [3], [2]). We have proved

Theorem 1 ([3]). Suppose $n \leqslant g$. Then $\mathcal{G}_{n}^{1}-\mathcal{G}_{n}^{2}$ is smooth of pure dimension $2 n+2 g-4$.

For $2 \leqslant n \leqslant g$, let \mho_{n}^{r} denote the closed complex subspace of V consisting of those $(t, P) \in V$ such that there are at least r gaps less than or equal to n in the Weierstrass gap sequence at P on V_{t}. These spaces were introduced in [4] and, by employing methods similar to those used in the proof of Theorem 1, we proved

Theorem 2 ([4]). For $2 \leqslant n \leqslant g$, $\mathscr{W}_{n}^{1}-\bigcup_{n}^{2}$ is smooth of pure dimension $n+2 g$ -3.

In this note, we describe the relationship between the \mathcal{G}_{n}^{r} and the \mathscr{W}_{n}^{r} and show how Theorem 2 may be derived in a direct fashion from Theorem 1.

Let Δ_{n} denote the image of $\delta_{n}: V \rightarrow V_{T}^{(n)}$, the closed immersion which takes a point (t, P) to the point $(t, n P)$. The following proposition follows easily from the definitions.

Proposition 1. For $2 \leqslant n \leqslant g$,

$$
\left.\delta_{n}\right|_{W_{n}}: \mho_{n}^{r} \xrightarrow{\approx} \mathscr{G}_{n}^{r} \cap \Delta_{n} .
$$

We now explicitly consider the intersection of \mathcal{G}_{n}^{r} and Δ_{n}. Suppose $(t, n P) \in$ $\mathcal{G}_{n}^{r} \cap \Delta_{n}$. Put $X=V_{t}$. Let z be a local coordinate on X centered at P and let z_{1}, \ldots, z_{n} denote n copies of z. Let $\sigma_{1}, \ldots, \sigma_{n}$ denote the n elementary symmetric functions in z_{1}, \ldots, z_{n}. Let $c_{1}, \ldots, c_{3_{g-3}}$ denote Patt's local coordinates on T

[^0]centered at t (see [8]). Then $c_{1}, \ldots, c_{3 g-3}, \sigma_{1}, \ldots, \sigma_{n}$ are local coordinates on $V_{T}^{(n)}$ centered at $(t, n P)$. Put
$Z=$ tangent space to $V_{T}^{(n)}$ at $(t, n P)$;
$Z_{1}=$ tangent space to G_{n}^{r} at $(t, n P)$;
$Z_{2}=$ tangent space to Δ_{n} at $(t, n P)$.
We describe coordinates for Z. Suppose $\xi \in Z$. We may view ξ as a C-homomorphism of local rings
$$
\xi: \mathcal{O}_{V_{T}^{(n),(t, n P)}} \rightarrow \mathbf{C}[\varepsilon] /\left(\varepsilon^{2}\right)
$$
(cf. [6, p. 332]). Then ξ is determined by its values on a set of local parameters of $\theta_{V_{f}^{(f)},(, n P)}$. So, if $\xi\left(c_{m}\right)=b_{m} \varepsilon, m=1, \ldots, 3 g-3$, and $\xi\left(\sigma_{i}\right)=u_{i} \varepsilon, i=1, \ldots, n$, then $\left(u_{1}, \ldots, u_{n}, b_{1}, \ldots, b_{3 g-3}\right)$ serve as coordinates for Z.

Proposition 2. $\xi=\left(u_{1}, \ldots, u_{n}, b_{1}, \ldots, b_{3_{g}-3}\right)$ is in Z_{2} if and only if $u_{2}=u_{3}$ $=\cdots=u_{n}=0$.

Proof. Suppose $\left(t_{1}, Q_{1}+\ldots+Q_{n}\right) \in V_{T}^{(n)}$ is a point near $(t, n P)$. Then $\left(t_{1}, Q_{1}\right.$ $\left.+\cdots+Q_{n}\right) \in \Delta_{n} \Leftrightarrow z\left(Q_{1}\right)=\cdots=z\left(Q_{n}\right)=z_{0} \Leftrightarrow z_{0}$ is an n-fold root of

$$
\begin{aligned}
F(Y)= & \prod_{i=1}^{n}\left(Y-z\left(Q_{i}\right)\right)=Y^{n}-\sigma_{1}\left(z\left(Q_{1}\right), \ldots, z\left(Q_{n}\right)\right) Y^{n-1} \\
& +\cdots+(-1)^{n} \sigma_{n}\left(z\left(Q_{1}\right), \ldots, z\left(Q_{n}\right)\right) \\
\Leftrightarrow & F\left(z_{0}\right)=F^{\prime}\left(z_{0}\right)=\cdots=F^{(n-1)}\left(z_{0}\right)=0 \\
\Leftrightarrow & \sigma_{k}\left(z\left(Q_{1}\right), \ldots, z\left(Q_{n}\right)\right)=\binom{n}{k}\left[\sigma_{1}\left(z\left(Q_{1}\right), \ldots, z\left(Q_{n}\right)\right)\right]^{k} / n^{k}
\end{aligned}
$$

$$
\text { for } k=2,3, \ldots, n
$$

and $\sigma_{1}\left(z\left(Q_{1}\right), \ldots, z\left(Q_{n}\right)\right)=n z_{0}$.
So, near $(t, n P), \Delta_{n}$ is defined by the equations $\left\{\sigma_{k}=\binom{n}{k} \sigma_{1}^{k} / n^{k}\right\}, k=2, \ldots, n$. Thus ξ is tangent to Δ_{n} at $(t, n P)$ if and only if $\xi\left(\sigma_{k}\right)=0$ for $k=2,3, \ldots, n$.

We next recall the description of Z_{1}, which was given in [3]. Let $1, \gamma_{2}, \ldots, \gamma_{g}$ denote the Weierstrass gaps at $P \in X$. Choose a basis of holomorphic 1-forms $d \zeta_{1}, \ldots, d \zeta_{g}$ on X such that $\operatorname{ord}_{P} d \zeta_{j}=\gamma_{j}-1$. Write

$$
d \zeta_{j}=\sum_{i=0}^{\infty} a_{i, j} z^{i} d z
$$

For details concerning the following result, we refer the reader to [3].
Proposition 3. Suppose $n \leqslant g$ and $\xi \in Z$. Then $\xi \in Z_{1}$ if and only if all minors of order $n-r+1$ of the matrix

$$
\mathfrak{N}=\left[\begin{array}{l:l}
(-1)^{i} a_{i, j} & \varepsilon\left[\sum_{l=1}^{n}(-1)^{i+l-1} a_{i+l} u_{l}+\sum_{m=1}^{3 g-3} \tau_{P, i}^{\prime}\left(Q_{m}\right) \zeta_{j}^{\prime}\left(Q_{m}\right) b_{m}\right] \\
i=0, \ldots, n-1 & i=0, \ldots, n-1 \\
j=1, \ldots, n-r & j=n-r+1, \ldots, g
\end{array}\right]
$$

vanish, where $\tau_{P, k}$ is an elementary integral of the second kind on X with pole of order $k+1$ at P and where $\left(Q_{1}, \ldots, Q_{3 g-3}\right)$ is any point chosen from an open subset of X^{38-3}.

Now, suppose $(t, n P) \in \mathcal{G}_{n}^{r}-\mathcal{G}_{n}^{r+1}, n<g$. Then \mathfrak{N} will have a nonzero minor of order $n-r$, call it μ, and in order that all minors of order $n-r+1$ of $\mathfrak{\pi}$ vanish, it is sufficent that those minors of order $n-r+1$ which contain μ should vanish. This gives rise to $r(g-n+r)$ linear equations $\left\{E_{k}\right\}$ in u_{1}, \ldots, u_{n}, $b_{1}, \ldots, b_{3 g-3}$. These equations are of the form

$$
E_{k}: \sum_{l=1}^{n} e_{k, l} u_{l}+\sum_{m=1}^{3 g-3} \alpha_{k}\left(Q_{m}\right) b_{m}=0
$$

where the α_{k} are (not necessarily finite) quadratic differentials on X. (The α_{k} arise from the products $d \tau_{P, i} d \zeta_{j}$ which appear in $\mathfrak{N}-$ see [3].)

Theorem 3. Suppose $n \leqslant g, r(g-n+r) \leqslant 3 g-3$, and $(t, n P) \in \mathcal{G}_{n}^{r}-\mathcal{G}_{n}^{r+1}$. If the above $\alpha_{k}, k=1, \ldots, r(g-n+r)$, are linearly independent quadratic differentials, then:

1) $\operatorname{dim} Z_{1}=3 g-3+(r+1)(n-r)-r g+r$ and \mathcal{G}_{n}^{r} is smooth at $(t, n P)$.
2) $\operatorname{dim} Z_{1} \cap Z_{2}=3 g-2-r(g-n+r)$ and \mathcal{G}_{n}^{r} and Δ_{n} intersect transversally at $(t, n P)$.

Proof. One may show, as in [3], that if the α_{k} are linearly independent, then since $\left(Q_{1}, \ldots, Q_{3 g-3}\right)$ is any point from an open subset of $X^{3_{g}-3}$, the matrix $\left[\alpha_{k}\left(Q_{m}\right)\right], k=1, \ldots, r(g-n+r)$ and $m=1, \ldots, 3 g-3$, will have maximum rank. It then follows that the systems of equations which define Z_{1} and $Z_{1} \cap Z_{2}$ will have maximum rank, establishing the theorem.

We showed in [3] that at least $g-n+r$ of the α_{k} are linearly independent. In particular, if $r=1$, then all the α_{k} are linearly independent. As a consequence we have

Theorem 4. Suppose $(t, n P) \in \mathcal{G}_{n}^{r}-\mathcal{G}_{n}^{r+1}, n<g$. Then
(1) $\operatorname{dim} Z_{1} \leqslant 2 g+2 n-r-3$; in particular, if $r=1$, then $\operatorname{dim} Z_{1}=2 g+2 n-$ 4 and \mathcal{G}_{n}^{1} is smooth at $(t, n P)$.
(2) $\operatorname{dim} Z_{1} \cap Z_{2} \leqslant 2 g+n-r-2$; in particular, if $r=1$, then $\operatorname{dim} Z_{1} \cap Z_{2}=$ $2 g+n-3$ and \mathcal{G}_{n}^{1} and Δ_{n} intersect transversally at $(t, n P)$.

Corollary. For $n \leqslant g$,
(1) $\operatorname{dim} \mathscr{W}_{n} \leqslant 2 g+n-r-2$;
(2) $W_{n}^{1}-W_{n}^{2}$ is smooth of pure dimension $2 g+n-3$.

Remarks. (1) The smoothness of $\mathcal{G}_{n}^{1}-\mathcal{G}_{n}^{2}$ has also recently been demonstrated by Arbarello-Cornalba [1] and Namba [7].
(2) Arbarello-Cornalba [1] have shown that $\mathscr{G}_{n}^{2}-\mathcal{G}_{n}^{3}$ is smooth, but it does not necessarily follow that the α_{k} are then linearly independent or that this space intersects Δ_{n} transversally.
(3) In [5], we defined \mathscr{U}_{n}^{r} for $n>g$. The points of this space are those $(t, P) \in V$ such that there are at least r gaps greater than n in the gap sequence at $P \in V_{t}$. We showed that for $n>g$, $\mathscr{W}_{n}^{1}-\mathscr{W}_{n}^{2}$ is smooth of pure dimension $4 g-n-3$. This result can also be obtained as above by considering the intersection of \mathcal{G}_{n}^{r} and Δ_{n} for $n>g$, but we note that, by our definition of \mathscr{W}_{n}^{r}, for $n>g$, $\mathscr{W}_{n}^{r}=\delta_{n}^{-1}\left(\mathcal{G}_{n}^{n-g+r}\right)$.

References

1. E. Arbarello and M. Cornalba, Su una congettura di Petri, Comment Math. Helv. (to appear).
2. R. C. Gunning, Lectures on Riemann surfaces: Jacobi varieties, Princeton Univ. Press, Princeton, N. J., 1972.
3. R. F. Lax, On the dimension of varieties of special divisors, Trans. Amer. Math. Soc. 203 (1975), 141-159.
4. \qquad , Weierstrass points of the universal curve, Math. Ann. 216 (1975), 35-42.
5. \qquad , Gap sequences and moduli in genus 4, Math. Z. 175 (1980), 67-75.
6. D. Mumford, Introduction to algebraic geometry (preliminary version of first $\mathbf{3}$ chapters), Harvard notes.
7. M. Namba, Families of meromorphic functions on compact Riemann surfaces,Lecture Notes in Math., vol. 767, Springer-Verlag, Berlin, 1979.
8. C. Patt, Variations of Teichmüller and Torelli surfaces, J. Analyse Math. 11 (1963), 221-247.

Department of Mathematics, Northeastern University, Boston, Massachusetts 02115
Department of Mathematics, Louislana State University, Baton Rouge, Louisiana (Current address)

[^0]: Received by the editors May 8, 1980.
 1980 Mathematics Subject Classification. Primary 32G15, 14H15.
 Key words and phrases. Complex space, Weierstrass point, special divisor, Teichmüller space, universal curve.

