
proceedings of the
american mathematical society
Volume 82, Number 1, May 1981

OPEN CENTRALIZERS AND THE

CONTINUITY OF GROUP REPRESENTATIONS

CLAUDE SCHOCHET AND BERTRAM SCHREIBER1

Abstract. Let G be a locally compact group, it: G -> £(L2(G)) the right regular

representation of G, and C'»(i£ G: the function g ~» it(gxg~]) is norm con-

tinuous}. This note is devoted to the study of Gc. In particular, the compactly

generated groups for which G = Gc are characterized.

1. Let G be a locally compact group and let it: G -» t(L2(G)) be the right

regular representation of G on L2(G) with respect to a right Haar measure. The

function it is continuous when £,(L2(G)) is given the strong operator topology, but

it is not continuous with respect to the norm topology, except in trivial cases.

Nevertheless, there is a middle ground, to which this note is devoted.

Following [5], [8], let £G = {T E t(L2(G)): the function g~*it(g)Tit(g)* is

norm continuous}. Then £G is a C*-algebra which contains the compact operators

and has various pleasing properties (cf. [5, Theorem 2.2]). Let

Gc = {x E G: it(x) E eG}

= [x E G: the function g ~» it(gxg'x) is norm continuous}.

It is easy to see that Gc is a subgroup of G. If G is abelian or discrete, then

Gc = G; in general it is much smaller. The relationship between Gc and G is the

main subject of this note.

We shall denote the identity component and the center of G by t70 and Z(G),

respectively. For x,y E G, CG(x) denotes the centralizer of x in G and [x,y] =

xyx~xy~x.

Definition 1.1. Let fibea Banach space of functions on G. Suppose that there

exist constants C, 8 > 0 such that the following conditions are satisfied:

(i) If tp E B and x E G, then Btt(x)tp E B, and IIJ»'77'(JC)*JDII ** C|MI> where

Bit(x)tp(t) = tp(txx).

(ii) Given <p E B, there exists X(tp) > 0 such that ||<p + xp\\ > X(tp) for all \p E B

such that tp • \¡/ = 0.

(iii) For every neighborhood U of e in G there exists 0 =£ tp E B such that tp = 0

off UandX(tp) > 8\\tp\\.

Then B will be called a homogeneous separating Banach space of functions on G.
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Examples 1.2. Most of the Banach spaces commonly encountered in harmonic

analysis satisfy the conditions of Definition 1.1. The following is a sampling of such

spaces.

(i) L"(G), 1 < p < oo,

(ii) C0(G),
(iii) the Fourier algebra A(G) [11

(iv) the Sobolev spaces W£(G) for G a Lie group,

(v) the spaces A¡¡(G) = L"(G) ® L"(G) of Figà-Talamanca and Gaudry [2], [3]

onG X G.

Definition 1.3. Let B be a homogeneous separating Banach space of functions

on G and Bit: G —> £(7?) be the regular representation as in (i) of Definition 1.1. Set

BGC = {x E G: the function g ~*Bit{gxg~x) is norm continuous}.

The following observation provides the technical tool which is the key to

studying BGC.

Theorem 1.4. Let B, Bit and BGC be as in Definition 1.3, and let x E G. Then

x E BGC if and only if CG(x) is an open subgroup of G.

In view of Theorem 1.4 the subscript B in BGC is redundant and will be omitted

following the proof of this theorem. Furthermore, the superscript in Gc may be

read as referring to (norm) continuity or to (open) centralizers.

Proof. Suppose first that CG(x) is open in G. Then the function g ~*Bir(gxg~x) is

constant when restricted to the open subgroup CG(x) of G, so in particular it is

norm continuous at the identity. Since Bit is a norm-bounded representation of G

(1.1 (i)), it follows that the function in question is continuous on all of G.

Conversely, suppose that CG(x) is not an open subgroup of G. Then any

neighborhood V of e must contain some v E V \ CG(x). We shall show that

\\Bit(gxg~x) — Btt(x)\\ is bounded away from zero for all such g, hence x & BGC.

As [g, x] =£ e there is a neighborhood W of e such that W n W[g, x] = 0. Let

0 t^ tp E B such that tp = 0 of f W and X(tp) > 8 \\tp\\. Then Bit([g, x]) is supported

on W[ g, x]. Thus

\\Bit(gxg-x) - Bit(x)\\ = \\(Bit([g,x]) - l)Bir(x)\\ > \\Bir([g,x]) - I\\/C

>  \\B"([g,x])tp-tp\\/C\\tp\\  >X(m)/C||m|| >8/C.    □

Corollary 1.5. Let G be a connected group. Then Gc = Z(G).

Proof. For any group G one has Z(G) c Gc trivially. Conversely, suppose that

x E Gc. Then CG(x) is an open subgroup of G. But G is connected, so CG(x) = G.

Thus x E Z(G).   □

Corollary 1.6. Suppose that Gc = G. Then G0 c Z(G).

The remainder of this note is devoted to the study of Gc. In §2 we consider the

case when G = Gc and we obtain complete information when G is compactly

generated. §3 is concerned with other cases.
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2. In this section we characterize the compactly generated groups for which

G = Gc and we obtain various equivalent formulations of this property.

Lemma 2.1. Suppose that G = Gc. Let A and B be compact sets of G. Then

[A,B] ={[x,y]:xEA,y E B)

is a finite set.

Proof. Let w, x, y, z E G with

z E CG(x) n CG(y) (2.2)

and

w E CG(x) n CG(y) n CG(z). (2.3)

Then

[zx, vvy] = z;oty;c~lz~|y~1w~'

= xyzwz~xw~xx~\~x    by (2.2) and (2.3)

= xy[z, w]x~y'x

= [x,y]    by (2.3).

Choose x E A and y E B. Then there is a neighborhood Ux X Vy of (x, y) E

A X B such that [u, v] = [x,y] for all (u, v) E Ux X Vy. Pick a finite subcover

from the open cover [Ux X Vy}, and the lemma follows.   □

Theorem 2.4. Let G be a compactly generated group. Then G = Gc if and only if

Z(G) is an open subgroup of G.

Proof. As previously noted, Z(G) c CG(x) for all x E G. If Z(G) is open, then

every group CG(x) is open, and hence Gc = G.

Conversely, suppose that G = Gc. Let Tí be a compact neighborhood of e which

topologically generates G. It suffices to prove that CG(K) is open, since CG(K) =

Z(G). By Lemma 2.1, there is a neighborhood U of e with U c K and [K, K] n U

= {e}. Let F be a symmetric neighborhood of e with [F, V] c U, so that

[F, V] = {e}. Let 77 be the subgroup of G generated by V. Then 77 is an abelian

subgroup of G, and 77 is open since V is open. Choose kx, . .. ,k„ E K such that

K c U "-xkjH. Let L be the open subgroup of G defined by
n

L = 77 n n CG(kj).
j=i

If k E K then k = kjy for some j and for some y E L. Thus for any x E L, one

has [k, x] = [kjy, x] = e, since L c CG(kj). This shows that L c CG(7C) and so

CG(7Q is an open subgroup, completing the proof.    □

Example 2.5. The hypothesis that G be compactly generated in Theorem 2.4

seems essential. We shall exhibit a group G such that Gc = G but Z(G) is not

open. Let 770 be a finite abelian group, and set 77 = II"_,77„, where each 77B is

isomorphic to 770. Let

2=0 (Z(2))„,
„_i
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and let a: 2 -» Aut(77) be the isomorphism such that the image of the generator of

the 7'th summand of 2 interchanges the 2/th and the (2/ + l)th coordinates of

elements of 77. Set G = 77 X B 2 (semidirect product), where 2 is given the discrete

topology. Then G is a locally compact group with open subgroup 77. If (h, o) E

CG(x) for some element x of G, then a direct computation shows that there exists a

finite set J of positive integers depending on o such that if h'k = hk for k E J, then

(h\ o) E CG(x). Thus CG(x) is open in G. Hence Gc = G. On the other hand,

Z(G) consists only of elements whose 77-coordinates are periodic with period two,

so Z(G) is not open in G.

Theorem 2.6. The following conditions are equivalent for a locally compact group

G.
(a) G = Gc.

(b) CG(x) is an open subgroup for all x E G.

(c) CG(K) is open for all compact subsets K of G.

(d) CG(H) is open for every compactly generated closed subgroup H of G.

(e) Z(H) is open in 77 for every compactly generated closed subgroup H of G.

Proof. The implications (a) <=> (b) are the content of Theorem 1.4. The implica-

tion (b) => (c) follows from the proof of Theorem 2.4. The facts that (b)^(c) <=> (d)

=> (e) are routine. To see that (e) => (d), recall that if 77 is a compactly generated

closed subgroup of G, then there is an open compactly generated subgroup 77' of G

containing 77. Applying (e) to 77', we conclude that CG(H) is open in G.   □

Theorem 2.7. Let G be a compact group. Then the following conditions are

equivalent.
(a) G = Gc.

(b) G has finite conjugacy classes.

(c) G is a central extension of an open abelian subgroup affinité index.

Proof. The implication (a)<=>(b) is immediate from Lemma 2.1. If (a) holds,

then Z(G) is an open normal subgroup by Theorem 2.4. Since G is compact, any

open subgroup must be of finite index, so (a) => (c). (Note that the subgroup may

be taken to be Z(G).) Conversely, suppose that 77 is an abelian subgroup of finite

index in G with 77 central. Then Z(G) is open, so CG(x) is open for all x E G.    fj

Condition (c) in Theorem 2.7 is parallel to a condition appearing in an important

theorem of C. C. Moore, which we recall. A group G is said to be of bounded degree

if the dimensions of the irreducible unitary representations of G are bounded [4].

The theorem of Moore [6] is as follows. The locally compact group G is of bounded

degree if and only if G is an extension of an open abelian subgroup of finite index.

We see immediately that any compact group G with G = Gc must be of

bounded degree, but that the converse is false. The simplest example was pointed

out to us by I. Kaplansky: Take G to be the noncentral extension of the circle

group T by the group of order two. Then G is of bounded degree (in fact the

irreducible unitary representations of G have dimension at most two), but for

appropriate choice x, CG(x) has four elements. So G ¥= Gc; in fact Ge = T.
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3. §3 is devoted to an exploration of how various conditions imposed upon Gc

are reflected in the structure of G.

Theorem 3.1. Gc is an open subgroup of G if and only if G has an open abelian

subgroup.

Proof. If 77 is an open abelian subgroup of G, then 77 c CG(x) for every

x E 77. Hence 77 c Gc, so Gc is open. Conversely, suppose that Gc is open. Then

Gc contains an open compactly generated subgroup 77. Theorem 2.4 implies that

Z(77) is open in 77 and hence in G. Thus Z(77) is an open abelian subgroup of G.

D
It would be of interest to characterize those groups G with Gc = {e}. One

motivation for our interest in this question is expressed by the following theorem

(3.2). Of course, if G is connected, then Gc = {e} just means that G has trivial

center. A class of totally disconnected groups with Gc = {e} is described in

Example 3.3.

Theorem 3.2. Let it: G -» t(L2(G)) be the right regular representation, and for

x E G let &x be the automorphism of £G given by

*X(T) = it(x)Tit(x)*.

If x E G \ Gc, then Q>x is outer. In particular, if Gc = {e}, then

gX Aut(£G)/Inn(£G)

is infective.

Proof. For x E G \ Gc restrict i>x to the compact operators %. Then <PX is

implemented by conjugation by tt(x), and it(x) $. £G. In fact, tt(x) is the only

unitary operator implementing <ï>x. For if U is a unitary operator implementing $x,

then tt(x)U~x would centralize %; hence tt(x) — U. Thus there is no unitary

element of £G which implements <ï>x, so &x is outer.    □

Example 3.3. Consider the group SL(2, Qp), where Qp denotes thep-adic number

field. Suppose that x is an element of this group with an open centralizer. Then x

must commute with all matrices of the form (^ ") for a, ß sufficiently close to zero

with aß = 0, since every neighborhood of 7 contains such matrices. An easy

computation shows that x = ± I, so SL(2, Qp)c = Z(2). A similar computation

yields PSL(2, Qpf = {e}.

More generally, let G be a Zariski-connected semisimple affine algebraic group

defined over a local field k (of arbitrary characteristic), and assume that G is

almost simple and isotropic over k. Let G(k) denote the group of A>rational points

of G. Then G(k) has a natural locally compact topology. Let 77 be a closed

cocompact subgroup of G(k). Then every neighborhood of the identity in 77 is

dense in G with respect to the Zariski topology [7, Lemma 2.1]. If CH(x) is open for

some x E 77, then x E Z(G). Thus 77c = Z(H). In particular, if G has trivial

center (e.g., G is of adjoint type), then 77c = {e}.

In all of the examples considered so far in this note, Gc is a closed subgroup of

G. In Example 3.4 we show that this is not always the case. Although we do not
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know how to characterize those groups G for which Gc is closed, Theorem 3.5

below provides a step in that direction.

Example 3.4. Let 77 be a finite group with trivial center, and let G = LT"_ ,77n, 77„

being isomorphic to 77. Then it is easy to see that

00

Gc = {x = (xn) E G: x„ = e for all but finitely many n) = © 77n.

In particular, Gc is not closed in G.

Theorem 3.5. Let Y(G) = (")*««« CG(x).

(1) If Y(G) is open in G, then Gc is closed.

(2) If G is metrizable and Gc is compact, then Y(G) is open.

Proof. The first assertion is clear. To prove the second assertion, let {77„} be a

decreasing sequence of open subgroups of G such that G0 = D T-\Hn anc* Hn/G0

is compact for all n. Then every open subgroup of G contains some 77„. For each n

let G„ = {x E Gc: CG(x) D 77n). Then {G„} is an increasing sequence of closed

subgroups of G whose union is Gc. If Gc is compact, then the Baire Category

Theorem implies that Gk is open in Gc for some k, and hence Gm = Gc for some

m > k. Thus 77m c Y(G).   Om V     >       1-1

Corollary 3.6. If Gn is open in G, then Gc is closed.
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