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ERGODIC UNDEFINABILITY IN SET THEORY

AND RECURSION THEORY

DANIELE MUNDICI

Abstract. Let T be a measure preserving ergodic transformation of a compact

Abelian group G with normalized Haar measure m on the collection Q> of Borel

sets; call g e G generic w.r.t. a set 5 6 4 iff, upon action by T, g is to stay in B

with limit frequency equal to m(B). We study the definability of generic elements

in Zermelo-Fraenkel set theory with Global Choice (ZFGC, which is a very good

conservative extension of ZFQ, and in higher recursion theory. We prove (1) the

set of those g £ G which are generic w.r.t. all ZFGC-definable Borel subsets of G

is not ZFGC-definable, and (2) "being generic w.r.t. all hyperarithmetical proper-

ties of dyadic sequences" is not itself a hyperarithmetical property of dyadic

sequences.

0. Introduction. We apply some well known facts of ergodic theory to obtain

undefinability results in such languages as Zermelo-Fraenkel set theory with

Global Choice, or the effective Borel Hierarchy of subsets of the circle.

Let G be an infinite compact Abelian group with the collection % of Borel

subsets of G, and m the (unique) normalized Haar measure on % (see [Ha] and

[Po]). Given any B G 9>, the probability m(B) may be also evaluated by means of

"generic" elements of G as follows: let T: G -* G be a measure preserving ergodic

transformation of (G, 9>, m); such T exists whatever (G, %, m) is (see [Wa] and

[DGS]). Given now g G G and letting Xb De me indicator of B, the limit

Km«-l2x.(r'(s))
n^°° (-0

almost surely (exists and) equals m(B), by Birkhoffs theorem (see [Fr]); generaliz-

ing a definition of [DGS], call g G G generic w.r.t. B (for measure m) iff the above

limit exists and equals m(B); intuitively, g is generic w.r.t. B iff {T'(g)},eu

provides a random sample of B, iff upon action by T, g is to stay in B with limit

frequency equal to m(B). If now Ê G ® is a countable field of subsets of G, let

G(t) = {g G G|V7i G £ g is generic w.r.t. B). When g G G(t) we say that g is

generic w.r.t. £ : The dependence of G(£) also on T and the actual topology of G

should be understood.

Now think of £ as the collection of properties in (i.e. subsets of) G which are

definable in some language; the question arises: Is the property of being generic

w.r.t. £ definable in £? We shall show (Theorem 1.1) that this is not the case

provided £ satisfies the following closure conditions: (i) each B G £ of measure

one contains a singleton of £, and (ii) £ is closed under T.
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Our first application of Theorem 1.1 is to Zermelo-Fraenkel set theory with

Global Choice (ZFGC), see [Le]. ZFGC has a new (unary function) symbol j

called selector, for global choice, and new axioms

(a) x =£ 0 —> s(x) G x, and

(b) all instances of the axiom scheme of replacement with any formula of the

language of ZFGC.

ZFGC is a conservative extension of ZFC (i.e. Zermelo-Fraenkel set theory with

Choice), in the sense that it adds no new theorems in the language of ZFC (see [Fe]

and [Ga]); Thus, in particular, if ZFC is consistent (if ZF is consistent) then so is

ZFGC, and ZFGC does not commit us to believe anything new about sets.

Further, the presence of global choice gives ZFGC a nice property explained in the

following discussion: As usual (see [Le, p. 12]) we call r a class term iff t is an

expression of the form (jc|<¡p(x)}, with <p(x) an arbitrary formula of ZFGC;

following [Le, p. 171 and p. 178] we call C a definable class of ZFGC iff C is given

by a class term of ZFGC with no free variables; examples of definable classes are:

V (i.e. {x\x = x}), 0 (i.e. {x\x ¥= x}) and S (i.e. {*| 3v, x = s(y)}); the latter

class cannot be proved in ZFGC to be equal to any class of ZF. We say that r is a

definable set of ZFGC (or, r is ZFGC-definable) if f r is a definable class which is

also a set. One now sees immediately that any definable nonvoid set of ZFGC

contains a definable singleton (proof: if r = {jc| <p(x)} then { v| Sz(y = s(z) /\ Vx(x

G z <-» q>(x)))} is a ZFGC-definable singleton contained in r).

The above nice property, together with conservativity mentioned before makes

ZFGC a very good extension of ZFC.

Returning to (G, %, m), assume that T: G -» G is measure preserving, ergodic

and, in addition, satisfies the following condition: Vg G G if {g} is ZFGC-defina-

ble then so is
I    I   / T'Y    "\\

tea

Then, in Corollary 1.2, we prove that the set of all those g G G which are generic

w.r.t. all Borel ZFGC-definable subsets of G is a Borel subset of G which is not

ZFGC-definable.

Our second application is to higher recursion theory: Let G = K G C be the unit

circle with complex multiplication, natural topology, normalized Haar measure m

on the Borel sets; let T: #-> K be given by T(z) = z2 for any z G K; let A:

K -» [0, 1) isomorphically embed K onto [0, 1), where X = <p_l and

cp(9) = e2vW,       VÍE[0,1).

The set of hyperarithmetical subsets of K (i.e. the set of images under <p of the

hyperarithmetical subsets of [0, 1)) is an effective version of the Borel hierarchy,

(see [Hi], [Ma] or [Sh]).

We prove (Theorem 2.1) that "being generic w.r.t. all hyperarithmetical proper-

ties in K (resp., in [0, 1))" is not itself a hyperarithmetical property in K (resp., in

[0, 1)).
We hope this is a contribution also to the investigation of the notion of

"randomness" (compare with [Lö]); in fact we believe that measure preserving

ergodic transformations must have a role in such investigation.
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1. Generic elements in ZFGC. Let T be a measure preserving ergodic transforma-

tion of (G, %, m) where G is an infinite compact abelian group with normalized

Haar measure m on the collection $ of Borel sets; also let £ G <© be a countable

field of subsets of G, and

G(£) = j g G G\ V5 G t,m(B) = hm «"'"s X»(7"(*))}.

where Xb denotes the indicator of B; in other words, g G G(£) iff g is generic with

respect to £.

Theorem 1.1. Under the above notation, assume that the following further condi-

tions hold:

(i) (weak choice): VA G £, if m(B) = 1 //ren 3g£fl with { g} G £;

(ii) (T-closure): Vg G G, // {g} e £ rfen Ui6„{r'(g)} G £.

77ievj G(£) » Borel and m(G(t)) = 1, but G(£) g £.

Proof. The first two conclusions of the theorem immediately follow from

Birkhoff's theorem in view of the fact that |£| < to. To complete the proof of the

theorem, assume that G(£) G £ (absurdum hypothesis); by weak choice, 3g G

G(£) such that {g} G £; by the invariance of m and infinity of G, we also have

that m({ g}) = 0; let F G G be defined by

.-urn,)}.
Then F G £ by T-closure, and m(F) = 0. Let x^ be the indicator of F; then

n-l

1 = n"1 lim   2 XÁT'ti)) *"n(F) = 0.

This shows that g is not generic with respect to F G £, hence, a fortiori, g & G(£),

a contradiction. Q.E.D.

As a first application of Theorem 1.1, adopting the above stipulations for

(G, 'S), m), consider the particular case in which £ Ç S» is defined by

£ = {B G <£ \B is ZFGC-definable).

Let  T:  G -» G be a measure preserving ergodic transformation satisfying the

following condition:

Vg G G, // { g} is ZFGC-definable, then so is  \J { 7"'( g)}. ( -I- )

Then we have the following:

Corollary 1.2. Under the above stipulations, the set G(£) of those g G G which

are generic w.r.t. £ is a Borel subset of G of measure 1 which is not ZFGC-definable.

Proof. Immediate from Theorem 1.1: T-closure is ensured by condition ( + )

above, and weak choice follows from our introductory discussion about ZFGC and

the fact that singletons in G are Borel. Q.E.D.

Remark 1.3. The above corollary may be paraphrased by saying that "being

generic w.r.t. ZFGC-definable Borel properties" is a non-ZFGC-definable Borel
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property. The fact that ZFGC has Global Choice rather than just weak choice,

yields the following stronger form of Corollary 1.2:

Corollary 1.4. Under the above stipulations, we have that for any S G G(£) with

S ¥=0, S is not ZFGC-definable.

Proof. Use Global Choice for S, then argue as in Corollary 1.2. Q.E.D.

Remark 1.5. The above corollary is paraphrased by saying that there is no

nontrivial definable set of ZFGC which is made only of generic elements with

respect to the definable Borel properties of ZFGC.

2. An application to effective descriptive set theory. Let G = K G C be the unit

circle with complex multiplication, natural topology, normalized Haar measure m

on the collection $ of Borel sets; let T: K -» K be given by T(z) = z2 for all

z G K; let X: K —> [0, 1) isomorphically embed K onto [0, 1), with X = <p~l and <p:

[0, 1) -» K given by
<p(0) = e2vi9, V6»G[0, 1).

Under map X, m becomes Lebesgue measure, multiplication becomes addition

(mod 1) and T becomes the doubling function D given by D(a ) = 2a (mod 1) for

all a G [0, 1). Notice further that X is measure preserving and T ° «p = m ° D. [0, 1)

may be naturally regarded as the set of all dyadic sequences a: w —» {0, 1} in which

zero occurs infinitely often; thus D(a) is obtained from a by cutting down the first

digit a(0). Let £ ç ® be the collection of all hyperarithmetical subsets of K, i.e.

the collection of images under <p of all hyperarithmetical subsets of [0, 1) (see [Hi],

[Ma] or [Sh]). Let G(£) be the set of those g G G which are generic w.r.t. £.

Theorem 2.1. Under the above hypotheses, G(£) £ £.

Proof. It is well known that (G, ©, m) is an infinite compact Abelian group

with T measure preserving and ergodic (see [Wa]); also, £ is a countable field of

subsets of G (see [Hi] or [Sh]).

Claim 1 (weak choice): B G £, m(B) = 1 implies 3g G B with {g} G £.

Proof. Every hyperarithmetical set of positive (>0) measure contains a hyper-

arithmetical singleton, by a result due independently to [Sa] and [Ta] (see also [Ke,

p. 368]); now note that <p and X are measure preserving.

Claim 2 (T-closure): Vg G G, if {g} G £, then UíeEu{T'(g)} G £.

Proof. Let g G G, {g} G t and y = X(g); then {y} is a hyperarithmetical

singleton, hence a 2¡ singleton, say

aG{y}^3ß\/bB(a(b),ß(b),b),      VaG[0, 1) (1)

with B recursive; (here we follow the usual notation, see [Sh]). Now, let F =

U,eu{7)'(Y)} andé? G [0, 1); then

9 GF    iff 3«0 G {Dn(y)}

iff3«3a    D"(a) = 0Ao G{y) (2)

iff 3«3a    (a G {y} A V/>    9(p) = a(n + /»))
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which shows that F is 2j, in view of (1), after some standard manipulations (see

[Sh]); on the other hand:

9 G F    iff Vt,    (t, G {y} -» 3«    9 = D"U))

iff Vt,    (n ft {y} V 3nVp    (9(p) = r,(p + »)))

which shows that F is n¡, in view of (1), after some standard manipulations; so F is

A}, hence hyperarithmetical, and so is, by definition,   <p(F) =Uieu{T'(g)}, in

view of T ° <p being equal to «p ° 7).

Having proved Claims 1 and 2, we see that £ satisfies both weak choice and

T-closure, so we conclude the proof by applying Theorem 1.1.     Q.E.D.

Remark. The proof of Theorem 2.1 also yields that "being generic w.r.t. all the

hyperarithmetical properties of dyadic sequences in [0, 1)" is not itself a hyperarith-

metical property of dyadic sequences of [0, 1). The same holds for arithmetical,

instead of hyperarithmetical, properties (see [Ke, p. 370]). The results of this paper

can be generalized to probability spaces without using the group structure. The

author thanks J. Mycielski for pointing this out to him.
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