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INDUCTIVELY PERFECT MAPS AND TRI-QUOTIENT MAPS

E. MICHAEL1

Abstract. It is proved that every tri-quotient map/: X -* Y from a metric space X

onto a countable regular space Y, with each f~l(y) completely metrizable, is

inductively perfect. It is not known to what extent all the hypotheses in this result

are necessary, and that leads to some open questions regarding simple compactness

properties of mappings between separable metric spaces.

1. Introduction. The purpose of this note is to give a partial answer to a question

asked in [4], and to raise some related questions.

Our starting point is the following result from [2], where a map2 /: X -* Y is

called inductively perfect if there exists anA"'c^ such that f(X') = Y and/|A" is

perfect.

Theorem 1.1 [2 Corollary 1.2]. Iff: X —> Y is an open map from a metric space

X onto a paracompact space Y, and if each f~l(y) is complete (with the given metric

on X),4 then f is inductively perfect.

Our next result (Theorem 1.3 below) deals with tri-quotient maps, which were

introduced in [4]. The definition of these maps, which is slightly complicated, will

be given in §2. At this point, let us merely record that each of the following

properties of a map/: X —> Y implies that it is tri-quotient (see [4, Theorem 6.5]).

1.2(a)/is open.

1.2(b)/is inductively perfect.

1.2(c) X is regular, Y is first-countable and Hausdorff, every f~\y) is Lindelöf,

and/is countable-compact-covering.

Concerning the terminology in 1.2(c), we call a map/: X —» Y compact-covering

(resp. countable-compact-covering) if every compact (resp. countable, compact)

K c Y is the image of some compact C c. X. Since perfect maps have the property

that the inverse image of every compact set is compact, it follows that every

inductively perfect map is compact-covering (and hence surely countable-

compact-covering).5
_
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3This X' must be closed in X if X is Hausdorff; see, for instance, [3, Corollary 1.5].

^Example 5.1 shows that it does not suffice for each/"'(^) to be completely metrizable.

By Theorem 3.1, an open map from a first-countable space onto a regular space must also be

countable-compact-covering.
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The following result shows that, under fairly mild restrictions, the implication

indicated by 1.2(b) above is reversible.

Theorem 1.3 ([4, Theorem 6.6]). Every tri-quotient map f:X->Y from a

complete metric space X onto a paracompact space Y is inductively perfect.

It was asked in [4, Question 1.9] whether Theorem 1.3 remains true if the

assumption that X is complete is weakened to assuming only that each f~x(y) is

complete. (In view of 1.2(a), a positive answer would yield a simultaneous general-

ization of Theorems 1.1 and 1.3.) While the above question remains open in

general, the following theorem, whose proof will be given in §4, supplies a positive

answer in case Y is countable.

Theorem 1.4. Every tri-quotient map f: X -» Y from a metric space X onto a

countable regular space Y, with each f~x(y) completely metrizable, is inductively

perfect.

We now ask another question: Does Theorem 1.4 remain true without assuming

that each f~x(y) is completely metrizablel It should be remarked that the answer is

"yes" if/is open, for then/actually maps some X' c X homeomorphically onto Y

(see Theorem 3.1). This should be contrasted to Example 5.1, where/is open but Y

is not countable.

Theorems 1.3 and 1.4, as well as the questions following them, retain their

interest if the assumption that / is tri-quotient is strengthened to assuming that /

has property 1.2(c). In the case of Theorem 1.3, one then obtains a result of A. V.

Ostrovskiï [6, Theorem 1]. In the case of the questions, one obtains-after further

strengthening and simplifying the hypotheses-the following formulations.

Question 1.5. Suppose/: X —» Y is a map from a separable metric space X onto

a metric space Y, with each f~x(y) compact. If / is countable-compact-covering,

must / be compact-covering? And if / is compact-covering, must / be inductively

perfect?

Question 1.6. Suppose/: X —> Y is a compact-covering map from a separable

metric space X onto a countable metric space Y. Must / be inductively perfect?

Observe that Questions 1.5 and 1.6 deal only with simple compactness properties

of mappings between separable metric spaces. We conclude this introduction with

some further remarks about these questions.

(1.7). I do not know the answer to the first part of Question 1.5 even when Y = I

(closed interval), X c Y X I, and/(y,/) = y.

(1.8). I do not know the answer to Question 1.6 even when Y = Q (rationals),

X c Y X /, and/(y,í)=y.

(1.9). The answer to Questions 1.5 and 1.6 is "yes" if /is open; see Theorem 1.1

(for Question 1.5) and Theorem 3.1 (for Question 1.6).

(1.10). The answer to both parts of Question 1.5 becomes "no" if the fibers are

not assumed compact (or at least complete), even when / is open. For the first part

that follows from Example 5.1, and for the second part it follows from [4, Example

9.7].
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(1.11). Regarding Question 1.6, I do not even know whether/ must have the

property (which is clearly possessed by all inductively perfect maps) that every

f~x(y) has a compact subset K such that/(i/) is a neighborhood of y in Y whenever

U is a neighborhood of K in X.

§§2 and 3 contain the definition of tri-quotient maps and some preliminary

results. The proof of Theorem 1.4 is given in §4, and §5 contains an example.

2. A lemma on tri-quotient maps. We begin with the following definition (see [4,

Definition 6.1]).

Definition 2.1. A map/: X —» Y is tri-quotient if one can assign to every open

U c X an open U* c Y such that:

(a)i/*c/(t/).

(b) X* = Y.

(c) t/, c U2 implies Uf c C/£.

(d) If y G (/*, and if % is a cover of f~x(y) n U by open subsets of X, then

there exists a finite <% c <¥ such that y G (U #)*.

In the following lemma, a sequence (^4„) of subsets of A' is called an outer

network at a set K c A" if ÍT = n„^4„ and every open G \D K contains some An.

Lemma 2.2. Suppose that f: X —* Y is a tri-quotient map with X metrizable and Y a

Tx-space, that U c X is open, that y E U*, and that f~x(y) is completely metrizable.

Then there exists a decreasing sequence (Un) of open subsets of U such that y G U*

for all n and ( Un) is an outer network at a nonempty compact subset K of f~x(y).

Proof. Let p be a compatible complete metric on f~x(y), and let X be metrized

by a metric d which extends p (see [1]).

By an easy induction, we can use Definition 2.1 to construct a sequence C$n) of

finite collections of open subsets of U such that for all n:

(a) If S G <3„, then diam S < \/n and S1 n f~\y) ¥= 0.

(b) If S G %+u then S c T for some T G §„.

(c)yG(U^,)*.

Let U„ = U ?„, and let us check that (£/„) satisfies our requirements.

Clearly Un c U, U„+1 c U„ and y G U* for all n. Now let K = H „i/„ =

H „ i/„. Then K c /~'(y) by (a); hence .AT is totally bounded and complete, and

thus compact. It remains to show that every open G D K contains some £/„; since

Un ¥= 0 for all n (because y G U*), this will also prove that K ¥= 0.

Let G D K be open in X, and suppose that G j) U„ for all n. Let fB' = {S G 5"„ :

5 (j: G}. Then each % is finite and nonempty, and if S G S¡¡¡+1, then S c T for

some ref^. By König's Infinity Lemma, one can choose Sn G ^'n such that

5'n+1 c Sn for all n. By (a) and the completeness of /~'(y), there exists an

x G D„ (S^ D f~x(y))- Clearly x E. K, so x E. G and hence S„ c G for some «.

But that is impossible (since Sn E •#„'), and our proof is complete.

3. Some results on l.s.c. and u.s.c. maps. Recall that a function <¡¡: Y —> 2Z (where

2Z = {A c Z: A =t= 0}) is /.i.e. (= lower semicontinuous) if {y G Y: <Xy) n K^

0} is open in F for every open V in Z. It is easy to see that a surjection/: Z —> y is
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open if and only if f~x : Y -» 2Z is l.s.c. The following result will be used in the

proof of Theorem 1.4.

Theorem 3.1 [5, Theorem 1.1]. If <¡¡: F—»2Z is l.s.c, with Y a countable6 regular

space and Z first-countable, then there exists a continuous g: Y ^*Z such that

g(y) E <¡¡(y) for all y E Y.

Now recall that a function <¡¡: F—»2* is u.s.c. (= upper semicontinuous) if

{y E Y: <f>(y) c V) is open in Y for every open V in X. Since a surjection

/: X —» Y is closed if and only if the map /"' : Y —* 2X is u.s.c, we are led to the

following characterization.

Lemma 3.2. A continuous surjection /: X —» Y is inductively perfect if and only if

there exists an u.s.c. 9: F—»2* such that 9(y) is a compact subset of f~x(y) for all

y E Y.

The following lemma will be applied in the proof of Theorem 1.4; for the

definition of outer networks, see the paragraph preceding Lemma 2.2.

Lemma 3.3. Let X be a topological space. Let S (A") = II"_1S„(Ar), where each

S„(A") is 2X with the discrete topology. Let 91(A) be the set of all S = (S„) in S (A")

such that (S„) is an outer network at D„Sn. Define xp: 91(A)-» 2* by \js(S) =

n„>S"n.  Then ^ is u.s.c.

Proof. Let S E 91(A), and suppose 4>(S) c V with V open in X. Then Sm c V

for some m. Let <¥ = {S' G 91(A): S¿, = Sm). Then % is a neighborhood of 5

in 9l(A") and xp(S') c V for all S" G %. Hence $ is u.s.c. at S, and that completes

the proof.

4. Proof of Theorem 1.4. Let 9l(A") be as in Lemma 3.3, and let Z C 9l(A") be

the set of all (Un) E 9l(A") such that U„ is open in X and Un + i c U„ for all n. For

each y G Y, let <¡¡(y) be the set of (U„) E Z such that y G U* for all n and (U„) is

an outer network at some nonempty compact K c f'x(y). It follows from Lemma

2.2 (with U = X) that <b(y) ̂  0 for ally G Y, so <f>: Y -+ 2Z.

Let us show that <;>: Y -» 2Z is l.s.c. We must show that, if H c Z is open, then

the set W = {y G F: <f>(y) n Ü ^ 0} is open in F. It will suffice to prove this for

every basic open H c Z of the form

tf ={([/„) G Z:U„= V„ÎOTn<n0},

where ( Vn) E Z and n0 G N. We will prove that W is open for this H by showing

that W = V*.

That W c F*o follows from the definitions. So suppose that y G F*o, and let us

check that y E W. To do that, we must find some ( t/„) G H n <K>0, an(l that is

easily done by letting Un = Fn for n < n0 and then applying Lemma 2.2 (with

U = UnJ) to choose U„ for n > n0.

Having shown that <i>: y-»2z is l.s.c, we can apply Theorem 3.1 to obtain a

continuous g: Y -> Z such that g(y) G <¡¡(y) for ally G Y. Now let «//: 9L(A") -» 2a"

6The significance of Y being countable is that it permits one to dispense with any completeness

requirements on the sets <M_v)-
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be as in Lemma 3.3, and define 9: Y —* 2X by 9 = ¡p ° g. Since \p is u.s.c. (by

Lemma 3.3), so is 9. The definitions of <|>, g and \p imply that 9(y) is a nonempty

compact subset of /~'(y) for all y G Y. Hence / is inductively perfect by Lemma

3.2.

5. An example.

Example 5.1 [2, Example 4.1]. There exists an open map/: X —> I from a

separable metrizable space X onto the closed interval I, with each f~x(y) com-

pletely metrizable, which is not compact-covering. (By Theorem 3.1, it is, however,

countable-compact-covering.)
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