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ORIENTABILITY OF PTXED POINT SETS

ALLAN L. EDMONDS1

Abstract. It is proved that the fixed point set of a smooth involution which

preserves orientation and a spin structure on a smooth manifold is necessarily

orientable. As an application it is proved that a simply connected spin 4-mamfold

with nonzero signature admits no involution which acts by multiplication by -1 on

its second rational homology group.

Consider a smooth orientation-preserving action of the cyclic group of order

2, Z2, on a manifold M. As is well known, in contrast to the case of odd order

group actions, the fixed point set F is a manifold which need not be orientable. The

simplest example is that of complex conjugation on CP2 which fixes RP2. In this

note we shall show that if in addition the action preserves a spin structure on M,

then F is necessarily orientable. This result will then be applied to show that a

closed simply connected spin 4-manifold A/4 of nonzero signature does not support

a smooth Z2 action which acts by multiplication by -1 on H2(M; Q).

The crux of the argument is in the following proposition about Z2 vector bundles

over the 2-sphere.

Proposition 1. Let £ be a k-dimensional Z2 vector bundle over S2, where Z2 acts

on S2 by reflection through the equator Sx. Then the fixed subbundle (i\Sx)Zl is

orientable if and only if £ is stably trivial as a vector bundle.

Proof. If dim(£| S x)z* = dim(£| S '), then any nonequivariant trivialization of

£\D2, where Z>2 is the upper hemisphere of S2, extends to an equivariant

trivialization of £. So in this case both £ and (£\Sx)z* are trivial.

Next consider the case when £ is 2-dimensional and (i-\Sx)Z2 is 1-dimensional. Let

S2 c E(£) denote the zero section. Then £ is stably trivial if and only if the

self-intersection number S2 • S2 = 0 (mod 2). To compute S2S2 we carefully

perturb S2 to a section S2 transverse to S2 and count S2 n S2.

Suppose that (£|S')Z2 is trivial. First perturb the equator Sx in £(£|S')Z2 to a

nonvanishing section Sx. This extends to some section D2 of £|Z>2, transverse to

Z>2. By equivariance this extends to a section D2 of £|£)2, transverse to D2. Then

52 = ß2ui>2isa topological section transverse to S2. Clearly S2 n S2 consists

of an even number of points.

Now suppose (£|S')Z2 is nontrivial. Then we may choose a section Sx of (£\SX)Z2

which vanishes at exactly one point of transverse intersection with the zero section

Sx. This section extends to a section D2  of £|D2 whose interior meets D\ in
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finitely many points of transverse intersection. By equivariance extend this to a

topological section S2 of £. Clearly S2 n S2 consists of an odd number of points. It

remains only to observe that S2 is topologically transverse to S2. To see this

consider a standard model for a neighborhood of {i} = S'nS' in £(£), as

follows: Coordinatize a neighborhood by C X C, where the first factor is the base

and the second factor is the fiber, and Z2 acts by complex conjugation in each

factor. Then Sx corresponds to R X 0 and (Ç\SX)Z2 corresponds to R X R. Simply

perturb R X 0 to R = {(x, x): x G R}. This may be accomplished by perturbing

C X 0 to C = {(z, z): z G C}. Then clearly R is transverse to R X 0 in R X R and

C is transverse to C X 0 in C X C. Since the perturbation S2 of S2 above may be

chosen this way near S ' n Sx, we see that S2 is indeed transverse to S2 as claimed.

It remains to reduce the general case to the cases already considered. First of all,

we may assume (£|S')Z2 has positive dimension by adding to £ a trivial bundle

S2 X R with trivial Z2 action in the fiber, if necessary. Clearly this does not affect

the orientability of (£\Sx)Zl or the stable triviality of £.

Decompose £|S'1 = ££, © £+, into eigenbundles for the eigenvalues ± 1, where

r + s = k. We have arranged that s > 1. The first case considered was when

r = 0; so we may also assume r > \. The two eigenbundles can be destabilized to

line bundles:

^.«e:,-1©^,    and   £'+1 « e°~xx © {',.

Let £q2 = £_*i © £|i and e = er_\~x © es~tx. We claim that the equivariant destabiliza-

tion £|S,|=£02ffie*~2 extends to an equivariant destabilization of £ over S2,

£2©6.

To accomplish this extension it suffices to show that an invariant trivial line

bundle X C £|S' extends to a (necessarily trivial) invariant line bundle fi Ç £ over

S2. To do this, choose a nonvanishing section of £|S" lying in X. This section

extends to a nonvanishing section of £|D2, since the obstruction to such an

extension lies in 7r,(R* - {0}), which is 0 since k > 3. This determines a line

bundle n+ c Î\D2 extending X. Then u_= T(fi+) is a line bundle over D2, which

extends À since T preserves X. Thus ju+ u /tt_ is the desired line bundle.

Finally £ is stably trivial if and only if £2 is; and (£|5')Zî is orientable if and only

if (£2|S x)Zl is. Reference to the second case considered completes the proof.

For subsequent use we note that Proposition 1 also holds, by the same proof, for

orientable vector bundles over any closed surface on which Z2 acts by reflection

through a separating simple closed curve.

An alternative proof of half of Proposition 1 assuming £ is a trivial vector bundle

over S2 might go as follows: Equivalence classes of Z2 vector bundle structures on

S2 X Rk correspond bijectively with the set of homotopy classes of maps

[D2, Sx; Ok, Ok2], where Z2 acts on the orthogonal group Ok by inversion (see

Bredon [3, VI. 11.1]). The triviality of (£\SX)Z2 in this case is the equivalent to saying

it2(Ok, Ok2) = 0 for all choices of base point-i.e., that the above set of homotopy

classes corresponds bijectively with the components of Ok2, a collection of Grass-

mann manifolds.
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In order to apply this we need a short discussion of spin structures (see

Atiyah-Bott [1] and Milnor [7]). A spin structure on an oriented manifold Af is a

(stable) reduction of its tangent bundle tm from the special orthogonal group SO to

its double covering Spin. The only obstruction to the existence of a spin structure is

the second Stiefel-Whitney class w2(M) E H2(M; Z¿. If w2(M) = 0, the distinct

spin structures are in one-to-one correspondence with HX(M; Z^. Alternatively a

spin structure on M is an element w G HX(FM; Z^, where FM is the tangent

frame bundle of M, such that w restricts nontrivially to the fiber SO. Then a

diffeomorphism preserves to if (dT)*(u>) = w.

More geometrically, a spin structure w on M may be viewed as a framing <§, or

trivialization, of the restriction of the tangent bundle tM to a neighborhood of the

2-skeleton of some triangulation of M. And a diffeomorphism preserves w if it

preserves the framing 'S.

In applications of Proposition 1 the following lemma will allow us to assume our

manifold M is 1-connected.

Lemma 2. Let Z2 act smoothly, preserving orientation and a spin structure on an

n-manifold M", n > 4, with fixed point set F. Then there is a cobordism W+x from

M" to a manifold N" on which Z2 acts preserving a spin structure extending the spin

structure on M" with the properties that

(\)itx(Nn) = 0and

(2) Fix(Z2, W)^F X [0, 1].

Proof. Let T: M" -> M" be the generator of the Z2-action. Let {*,} c ttx(M")

be a finite set of (normal) generators for w,(A/"). By general position, these

elements x¡ can be represented by disjoint embedded circles C, c M" such that

T(C¡) nCj = 0 for all ij.

As in Milnor [6, Theorems 2, 3], and, especially, Kervaire and Milnor [5, Lemma

6.2], there are unique framings % of the normal bundles v(C¡, M") so that the given

spin structure extends over the trace of surgery on {C,}, using the {%}. Similarly

there are unique framings S, of v(TC¡, M") such that the given spin structure

extends over handles attached to M X I along these framed circles. But since T

preserves the given spin structure, it follows that §¡ * T*%. From this, it then

follows that one can surger {C,} u {FC,} simultaneously and equivariantly using

framings {%} u {T*%}, and that the trace of the surgery has the desired proper-

ties.

An instructive example is a Z2 action onS' X S3 fixing a Klein bottle: simply

double a regular neighborhood of a nontrivial circle in RP2 c CP2, invariant

under complex conjugation. In this case the Z2 action switches the two spin

structures on Sx X S3, Equivariant surgery to kill the fundamental group leads to

CP2# - CP2, rather than S2 X S2.

Theorem 3. If Z2 acts smoothly on an n-manifold M "preserving orientation and a

spin structure, then the fixed point set F = MZ2 is orientable.

Proof. We may assume that M is connected and Z2 acts nontrivially. Since the

action preserves orientation, MZl has even positive codimension. Therefore we
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need only consider the case when n > 4. By Lemma 2 we may also assume M is

simply connected. Suppose F is nonorientable. Then there is an orientation-revers-

ing loop f0: Sx -» F. Since itx(M) = 0, /0 extends to a map /+: D\ —» Af. By

equivariance/+ extends to an equivariant map/: S2 -> Af, where, as usual, Z2 acts

on S2 by reflection through S1. Define £ = f*(rM), where tw is the tangent bundle

of M. Since f0(Sx) is orientation-reversing, (£|S')Z2 =/o(TA/|ir)Z2 = Jo(tf) IS non"

trivial. By Proposition 1, £ is stably nontrivial. On the other hand h>2(£) = f*w2(iM)

= /*(0) = 0, since Af is a spin manifold, implying that £ is stably trivial. This

contradiction completes the proof.

The same line of proof applies to the following consequence of Proposition 1,

which concerns involutions which do not necessarily preserve a spin structure.

Corollary 4. Let Z2 act smoothly on a spin manifold M with fixed point set F.

Then the orientation class wt(F) lies in the image of the restriction homomorphism

H '(Af ; Z2) -> H (F; Z¿.

Proof. If wx(F) is not in the image of the restriction homomorphism, then there

is an orientation-reversing loop f0: Sx -* F which bounds in Af mod 2. So F0

extends to a map /+ : F2 —» Af for some possibly nonorientable surface V\ with

boundary S1. This yields an equivariant map/: F2-» Af where F2 = F+ \J s\ V_

and V_ is another copy of V+, and Z2 acts on V by reflection through S '.

Now the proof proceeds just as that of Theorem 3, applying the version of

Proposition 1 described at the conclusion of the proof of the proposition.

As an application of the preceding results we have the following theorem which

was the original motivation of this work.

Theorem 5. Let Z2 act smoothly on an orientable closed smooth spin 4-manifold M

preserving orientation and a spin structure. Suppose H2(M; Q)Zl = 0. Then M has

signature oM = 0.

Proof. By Lemma 2 we may assume that M is simply connected and hence has a

unique spin structure. By a result2 of Atiyah and Bott [1, 5.7] (see also Bredon

[2, Theorem III]), the fixed point set F, if nonempty, has constant dimension 0 or 2.

Suppose first that F consists of isolated points. Then x(M) = ?-X(M/Zj) — #F.

But i/„(Af/Z2; Q) « i/»(Af; g)Z2 « Ht(S4; Q), so 2 + dim H2(M; Q) = 4 -

#F. Therefore dim H2(M; Q) < 2; and a(M) = 0 since a spin 4-manifold of

nonzero signature has dim H2(M; Q) at least 8 (in fact 16, by Rochlin's Theorem).

Now consider the case when each component of F has dimension 2. Then the

orbit space M/Z2 is a manifold and the orbit map Af —* M/Z2 can be viewed as a

smooth branched covering branched over the smooth surface F c Af/Z2. The

surface F is orientable by Theorem 3. As before Af/Z2 is a rational homology

sphere.

2As Atiyah has pointed out in a private communication, the italicized statement on p. 487 of [1]

preceding Proposition 5.7 should be modified in the nonsimply connected case to say that a fixed point

free involution preserving a spin structure w on a manifold M has even type wth respect to « if and only

if o) is induced from a spin structure on the orbit space. In particular the antipodal involution on 5 ' has

odd type with respect to the spin structure which extends over a disk and even type with respect to the

other one.
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The normal bundle v(F, M/Z2) is classified by its Euler class e(v) in H2(F; Z),

which is torsion free. But the Euler class must be the restriction of a class in

H2(M/Z2; Z), which is finite. Therefore e(v) = 0 and v(F, M/Z^ is trivial. Since

v(F, M/Z2) is trivial a specialization of the Atiyah-Bott-Singer fixed point theorem

(cf. Hirzebruch [4, p. 255]), says that a(Af) = 2o(M/Z2). Hence <r(Af) = 0.

Finally, if F = 0, then, just as in the preceding case, a(M) = 2a(M/Z^\ and

a(M/Z2) = 0, since H2(M/Z2; Q) m H2(M; Qf2 = 0. This completes the proof.

Theorem 5 should be viewed as a nonrealizability statement about equivariant

bilinear forms. For example, no complex hypersurface of even degree greater than

2 in CP3 admits an involution which acts on its middle homology by multiplication

by -1. In particular no simply connected closed spin 4-manifold of nonzero

signature can be a 2-fold branched covering of the 4-sphere.
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