AN UNKNOTTING THEOREM IN Q^{∞} -MANIFOLDS

VO THANH LIEM¹

ABSTRACT. In this note, we prove the following unknotting theorem.

THEOREM. Let M be a Q^{∞} -manifold and let F: $X \times I \to M$ be a homotopy such that F_0 and F_1 are Q^{∞} -deficient embeddings. Then, there is an isotopy H: $M \times I \to M$ such that $H_0 = \text{id}$ and $H_1 \circ F_0 = F_1$. Moreover, if F is limited by an open cover α of M and is stationary on a closed subset X_0 of X, then we may choose H to also be limited by $St^4(\alpha)$ and to be the identity on $F(X_0 \times I)$.

However, a similar unknotting theorem for Z-embeddings does not hold true in Q^{∞} and R^{∞} .

1. Introduction and definitions. Given an open cover α of a topological space M, two maps $f, g: X \to M$ are said to be α -close if for each $x \in X$, there is an open set $U \in \alpha$ such that $f(x), g(x) \in U$. A homotopy $H: X \times I \to M$ is said to be α -limited if for each $x \in X$, there is an open set $U \in \alpha$ such that $H(x \times I) \subset U$.

A closed subset X of M is said to be a Z-set in M provided that for any prechosen open cover α of M, there is a map $f: M \to M - X$ that is α -close to id_M.

The Hilbert cube Q is the countably infinite product $\prod_{1}^{\infty}[0, 1]$. For basic results in Q-manifold theory, we refer to [1].

Let $\{Q_n\}$ be a sequence of copies of the Hilbert cube such that Q_n is a Z-set in Q_{n+1} for each *n*. We define Q^{∞} to be the direct limit space $\lim_{\to} \{Q_n\}$ endowed with the direct limit topology. It follows from the Z-set unknotting theorem of Anderson, Lemma C below, that this space is unique up to homeomorphism. By a Q^{∞} -manifold we mean a paracompact space which is locally homeomorphic to Q^{∞} .

In [3], Heisey proved the following lemma.

LEMMA A. Every Q^{∞} -manifold M is equal to $\lim_{n \to \infty} M_n = \bigcup_{n=1}^{\infty} M_n$, where each M_n is a compact Q-manifold, and a Z-set in M_{n+1} .

From this lemma we may introduce the following notion. A subset X of a Q^{∞} -manifold M is said to be an *inductive Z-set* in M provided that there is a decomposition $M = \lim_{i \to \infty} M_j$ as in Lemma A such that $X \cap M_j$ is a Z-set in M_j for each $j = 1, 2, \ldots$

As in [5], a closed subset X of a Q^{∞} -manifold M is said to be Q^{∞} -deficient if there is a homeomorphism $h: M \to M \times Q^{\infty}$ such that $h(X) \subset M \times 0$. The

© 1981 American Mathematical Society 0002-9939/81/0000-0225/\$03.00

Received by the editors March 20, 1980 and, in revised form, May 22, 1980.

AMS (MOS) subject classifications (1970). Primary 54C99, 54C50; Secondary 54C25.

Key words and phrases. Hilbert cube, direct limit space, Z-set, inductive Z-set, Q^{∞} -deficient, isotopy, unknotting theorem.

¹Research partially supported by Grant No. 1045 of the University of Alabama.

concept of Q^{∞} -deficiency is equivalent to that of Q-deficiency in the Q^{∞} -manifold theory [5].

We now state some known results that we will use extensively in the sequel.

LEMMA B [1, THEOREM 3.1]. Let X and Y be locally compact, separable, metric spaces.

(i) If $A \subset X$ is closed and $A = \bigcup_{n=1}^{\infty} A_n$, where $A_n \subset X$ is a Z-set, then $A \subset X$ is a Z-set.

(ii) If $A \subset U \subset X$, $A \subset X$ closed, U open and $A \subset U$ is a Z-set, then $A \subset X$ is a Z-set.

(iii) If $A \subset X$ is a Z-set, X is an ANR and $U \subset X$ is open, then $A \cap U$ is a Z-set in U.

LEMMA C [1, THEOREM 19.4]. Let M be a Q-manifold, A be locally compact and let: F: $A \times I \rightarrow M$ be a proper map such that F_0 and F_1 are Z-embeddings. Then, there is an isotopy $H: M \times I \rightarrow M$ such that $H_0 = \text{id}$ and $H_1 \circ F_0 = F_1$. Moreover, if F is limited by an open cover α of M, then we may choose H to also be limited by α .

The Main Theorem of this note is the controlled relative version of the unknotting theorem for Q^{∞} -deficient embeddings in Q^{∞} -manifolds, which is similar to Lemma C above. Besides that, it will be shown that the notion of Q^{∞} -deficiency is equivalent to that of inductive Z-embedding in Q^{∞} -manifolds.

Finally, the author is very grateful to D. W. Curtis for criticism of an early version of this paper.

2. Inductive Z-embedding and Q^{∞} -deficiency.

PROPOSITION 1. A subset X of a Q^{∞} -manifold N is Q^{∞} -deficient in N if and only if X is an inductive Z-set in N.

PROOF. (i) Let X be a Q^{∞} -deficient subset of N. We will show that X is an inductive Z-set in N. We may assume $X \subset N \times 0 \subset N \times Q$. Let $N = K \times Q^{\infty}$, where K is a locally finite complex (see [3]), and let $K = \bigcup_{1}^{\infty} K_n$, where K_n is a compact subcomplex of K_{n+1} for each n. Now, let N_n denote $K_n \times Q_n \times Q$, then $X \cap N_n \subset K_n \times Q_n \times 0$ is a Z-set in N_n . Moreover, it is clear that $N \times Q = \lim_{n \to \infty} (N_n, i_n)$.

(ii) Let X be an inductive Z-set in N. We will construct a homeomorphism $h: N \to N \times Q$ such that $h(X) \subset N \times 0$. Assume that $N = \lim_{n \to \infty} N_n$ such that $X_n = X \cap N_n$ is a Z-set in N_n . We will construct a sequence of homeomorphisms $h_n: N_n \to N_n \times Q$ such that for each n

(a) $h_n(X_n) \subset N_n \times 0$, and

(b) $h_{n+1} | N_n = h_n$.

Then, the homeomorphism h that we desired will be $\lim_{\rightarrow} h_n$, and the proof will be complete.

1. Construction of h_1 . From Lemma C, there is a homeomorphism $f_1: N_1 \to N_1 \times Q$ such that $f_1(X_1) \subset N_1 \times 0$. Since the projection $\pi: N_1 \times Q \to N_1 \times 0$ is a

near-homeomorphism, so is the map πf_1 . Thus, πf_1 is homotopic to a homeomorphism $g_1: N_1 \to N_1 \times 0$. Let us define $h_1 = (g_1^{-1} \times id_Q) \circ f_1: N_1 \to N_1 \times Q$. Then h_1 is a homeomorphism enjoying the following properties:

 $(\alpha_1) h_1(X_1) \subset N_1 \times 0$, and

 $(\beta_1) h_1 \simeq \text{inclusion } i$, where i(x) = (x, 0).

2. Construction of h_2 . Recall that N_1 is a Z-set in N_2 . Let $i_1: N_1 \rightarrow N_2$ denote the inclusion map. Similar to the construction of h_1 , there is a homeomorphism $h'_2: N_2 \rightarrow N_2 \times Q$ such that

 (α_2) $h'_2(X_2) \subset N_2 \times 0$, and

 (β_2) $h'_2 \simeq$ inclusion *i*, i(x) = (x, 0).

Then it can be shown that the Z-embedding $h'_2 \circ i_1 \circ h_1^{-1}$ is homotopic to the inclusion map $i_1 \times id_Q$: $N_1 \times Q \to N_2 \times Q$. Therefore, by Lemma C, there is a homeomorphism

$$\psi_2: N_2 \times Q \to N_2 \times Q$$

such that $\psi_2 \circ h'_2 \circ i_1 \circ h_1^{-1} = i_1 \times \mathrm{id}_Q$.

So, if we define $h_2'' = \psi_2 \circ h_2'$, then the following diagram commutes.

$$\begin{array}{cccc} N_1 & \stackrel{i_1}{\to} & N_2 \\ \downarrow h_1 & & \downarrow h_2'' \\ N_1 \times Q & \stackrel{i_1 \times \mathrm{id}}{\to} & N_2 \times Q \end{array}$$

However, we may lose the property $h''(X_2) \subset N_2 \times 0$.

Now, we are going to fix $h_2^{"}$ to obtain a homeomorphism h_2 as we desired.

Consider the Z-set $(N_1 \times Q) \cup h_2''(X_2) = h_2''(N_1 \cup X_2)$ in $N_2 \times Q$. It is clear that $h_2''(X_2 - X_1) = h''(X_2) - (N_1 \times Q)$ and we can homotope $h_2''(X_2)$ into $N_2 \times 0$ (rel. $h_2''(X_1)$). Then, by the relative Z-embedding approximation theorem [1, Theorem 18.2], we can assume that the final map of this homotopy is a Z-embedding. Moreover, this homotopy can be extended over $N_1 \times Q$ by the identity.

Again by Lemma C, there is a homeomorphism $\phi_2: N_2 \times Q \to N_2 \times Q$ such that (1) $\phi_2 | N_1 \times Q = id$,

$$(2) \phi_2(h_2''(X_2)) \subset N_2 \times 0.$$

Thus, if we define $h_2 = \phi_2 \circ h_2''$, then h_2 has the desired properties (a) and (b). 3. Construction of h_n . h_n is constructed similarly from h_{n-1} when n > 3.

The proof of Proposition 1 is now complete.

LEMMA 1. Let $\{X_n\}$ be a sequence of Hausdorff spaces such that X_n is a subspace of X_{n+1} , and let $X = \lim_{n \to \infty} X_n$. If K is a compact subspace of X, then there is an integer k such that $K \subset X_k$.

A closed subset X of M is said to be strongly negligible if for each open cover α of M there is a homeomorphism $f: M \to M - X$ such that f is α -close to id_M .

COROLLARY 1. Every compact subset K of a Q^{∞} -manifold M is Q^{∞} -deficient, and therefore strongly negligible.

VO THANH LIEM

PROOF. Consider $M = \lim_{n \to \infty} M_n$ as in Lemma A. Then, $K \subset M_k$ for some k, and K is a Z-set in M_n , n > k. It follows that K is an inductive Z-set, and therefore Q^{∞} -deficient in M. By [5, Theorem 4.2], every Q^{∞} -deficient set in M is strongly negligible.

PROPOSITION 2. If X and Y are Q^{∞} -deficient subsets of a Q^{∞} -manifold M, then so is $X \cup Y$.

PROOF. By use of Lemma 1 and Proposition 1 above, we can assume that $M = \lim_{i \to \infty} M_i$ and $M = \lim_{i \to \infty} M_j$ such that the following hold.

- (1) $X_i = X \cap M_i$ is a Z-set in M_i , for each $i = 1, 2, \ldots$
- (2) $Y_j = Y \cap M'_j$ is a Z-set in M'_j , for each $j = 1, 2, \ldots$

(3) M_i is a Z-set of M'_i , i = 1, 2, ...

(4) M'_i is a Z-set of M_{i+1} , j = 1, 2, ...

(5) $M_i - Y$ is not empty for each $i = 1, 2, \ldots$

We will construct a sequence of compact Q-manifolds M^{j} such that

(i) $M'_{j} \subset M^{j} \subset M_{j+1} \subset M'_{j+1} \subset M^{j+1} \dots$, for all $j = 1, 2, \dots,$

(ii) M^j is a Z-set of M^{j+1} , and

(iii) $(X \cup Y) \cap M^j$ is a Z-set in M^j .

Then the proposition follows from Proposition 1, since $X \cup Y$ is now an inductive Z-set in $M = \lim M^{j}$.

a. Construction of M^1 . Recall X_1 and Y_1 are Z-sets in M'_1 . However, $X'_1 = X \cap M'_1$ is not necessarily a Z-set in M'_1 .

Since M'_1 is a Z-set in M_2 , $M'_1 - Y$ is a Z-set in $M_2 - Y$ (Lemma B). By the collar theorem [1, Theorem 16.2], there is an open embedding

$$\lambda: (M_1' - Y) \times [0, 1] \to M_2 - Y$$

such that $\lambda(x, 0) = x$ for all $x \in M'_1 - Y$.

Let $\phi: M'_1 \to [0, \frac{1}{2}]$ be a map such that $\phi^{-1}(0) = Y_1$. Then

Claim. The pinched collar $M^1 = \{\lambda(x, t) | x \in M'_1 - Y, 0 \le t \le \phi(x)\} \cup Y_1$ of M'_1 in M_2 at Y_1 has the following properties.

(1) M^1 is a Q-manifold homeomorphic to M'_1 , since the natural projection p: $M^1 - Y \rightarrow M'_1 - Y$ may be approximated by a homeomorphism which extends by the identity on Y_1 .

(2) $Y_1 = Y \cap M^1$ and Y_1 is a Z-set in M^1 , since $Y_1 \subset M'_1$ is a Z-set.

(3) $X^1 = X \cap M^1$ is a Z-set in M^1 .

In fact, we can write X^1 as

$$X^{1} = \left[X \cap \left(M^{1} - Y_{1} \right) \right] \cup \left(X \cap Y_{1} \right).$$

Then, $X \cap Y_1$ is a Z-set in M^1 . Moreover, we can easily see that $X \cap (M^1 - Y_1)$ is the union of a sequence of compact Z-sets in M^1 . Thus, the property (3) follows from Lemma B(i).

b. Construction of M^j . Similarly, the Q-manifold M^j will be a pinched collar of M'_j in M_{j+1} at Y_j such that $(X \cup Y) \cap M^j = X^j \cup Y_j$ is a Z-set in M^j . Moreover, we can show that M^j is a Z-set of M^{j+1} as follows. For fixing our idea, we assume

128

that j = 1 and we have the following inclusions

$$M^1 \subset M_2 \subset M'_2 \subset M^2.$$

Observe that $M'_2 - Y = M'_2 - Y_2$ is a Z-set in $M^2 - Y = M^2 - Y_2$, since M^2 is a pinched collar of M'_2 in M_3 at Y_2 . Hence, $M^1 - Y = M^1 - Y_1$ is a Z-set in $M^2 - Y$, since $M^1 - Y$ is closed in $M'_2 - Y$. Using Lemma B(ii), we see that $M^1 - Y_1$ is the union of sequences of Z-sets in M^2 . Then, Lemma B(i) again shows that $M^1 = (M^1 - Y_1) \cup Y_1$ is a Z-set in M^2 , since $Y_1 \subset Y_2$ is also a Z-subset of M^2 . Therefore, all desired properties of the sequence $\{M^j\}$ are verified.

We note that in contrast to Lemma B(i), the closed countable union of Q^{∞} -deficient subsets of a Q^{∞} -manifold need not be Q^{∞} -deficient. For example, consider $Q^{\infty} = \lim Q_n$ and the countable union $\bigcup_{i=1}^{\infty} Q_n = Q^{\infty}$.

3. Unknotting theorem. Let α be an open cover of M and $U \in \alpha$. We define $St(U, \alpha) = \bigcup \{ V \in \alpha | U \cap V \neq \emptyset \}$. By $St(\alpha)$ we will mean the cover $\{St(U, \alpha) | U \in \alpha \}$. Inductively, we define $St^{n+1}(\alpha) = St(St^n(\alpha), \alpha)$.

MAIN THEOREM. Let X be a Q^{∞} -deficient subset of a Q^{∞} -manifold M and let f: $X \to M$ be a Q^{∞} -deficient embedding homotopic to the inclusion map i: $X \subset M$. Then, there is an isotopy F: $M \times I \to M$ such that the following hold.

(i) $F_0 = \mathrm{id}_M$.

(ii) $F_1 | X = f$.

(iii) Given an open cover α of M, if the homotopy H: $i \simeq f$ is limited by α , then the isotopy F can be chosen to be limited by $St^4(\alpha)$.

(iv) Moreover, if $H_t|X_0 =$ inclusion on a closed subset X_0 of X for each $t \in I$, then F_t can be chosen to be the identity on X_0 for each t.

PROOF. Case 1. We assume that $f(X - X_0) \cap (X - X_0) = \emptyset$.

Let \tilde{X} denote the quotient space $(X \times I)/\sim$, where $(x, t) \sim (x, 0)$ if $x \in X_0$. Let us define $\tilde{H}: \tilde{X} \to M$ by $\tilde{H}([x, t]) = H(x, t)$. By Proposition 2, the restriction of \tilde{H} to $X \times \{0, 1\}/\sim$ is a Q^{∞} -deficient embedding. By the relative approximation theorem in Q^{∞} -manifolds [5, Theorem 3.3], we can assume that \tilde{H} is a Q^{∞} -deficient embedding and the induced homotopy, say H, now is limited by $St(\alpha)$. We think of M as $M \times Q$, and we assume that $H(X \times I) \subset M \times 0$. Let $M = \lim_{\to \to} M_n$ as in Lemma A, and let us define

$$Z_k = H^{-1}(M_k \times Q) = \{(x, t) \in X \times I | H(x, t) \in M_k \times Q\},\$$

and $X_k = p_X(Z_k)$ where $p_X: X \times I \to X$ is the projection. Now, since $\tilde{Z}_k = Z_k/\sim = \tilde{H}^{-1}(M_k \times Q)$ is compact, it follows that Z_k and X_k are compact, and we may assume that $H(X_k \times I) \subset M_{k+1} \times Q$.

By the last part of this proof, we can assume that there is a sequence of compact Q-manifold N_k 's such that for each k = 1, 2, ..., (a) $N_k \supset M_k \times Q$, (b) N_k is a Z-set in N_{k+1} , (c) $H_i: X_k \rightarrow N_k$ is a Z-embedding for each $t \in I$, and (d) $H[(X - X_k) \times I] \cap N_k = \emptyset$. Therefore, the isotopy of $M = \lim_{x \to 0} N_k$ that we desired will be constructed inductively on the sequence $\{N_k\}$ by use of the fiber-version of the Z-sets unknotting theorem [6] that can be restated as follows. "Let X be a compact Z-subset in a Q-manifold N, and let $H_i: X \rightarrow N$ $(t \in I)$ be a

continuous family of Z-embeddings such that $H_0(x) = x$, then H extends to an isotopy \overline{H} of N with $\overline{H}_0 = id_N$."

Now, to complete the proof, we will construct such a sequence $\{N_k\}$ from the given sequence $\{M_k \times Q\}$ as follows. For fixing our idea, let us work with k = 1. Define $Y = (M_1 \times Q) \cup H(X_1 \times I)$. Then, Y is a Z-set in $M_2 \times Q$, since both $M_1 \times Q$ and $H(X_1 \times I)$ are Z-sets in $M_2 \times Q$. Let W be a compact Q-manifold neighborhood of a copy of Y in Q such that (i) Y is a Z-set in W, and (ii) the inclusion map $Y \subset M_2 \times Q$ has an extension over W, say g. Since Y is a Z-set in $M_2 \times Q$, we can assume, by the relative Z-embedding approximation theorem [1, Theorem 18.2], that g is a Z-embedding such that $g(W - Y) \cap Y = \emptyset$. If we define $N_1 = g(W)$, and similarly for N_k (k > 1), then the sequence $\{N_k\}$ has all above properties. Hence, the proof of Case 1 is now complete.

Case 2. General case. Assuming again that $X \cup f(X) \subset M \times 0$, there is a Q^{∞} -deficient embedding $f': X \to M \times Q^{\infty}$ such that

(i) $f'|X_0$ = inclusion,

(ii) $f'(X - X_0) \cap (M \times 0) = \emptyset$, and

(iii) f' is α -homotopic to f (rel. X_0).

So, f' is St(α)-close to the inclusion $X \subset M \times Q^{\infty}$.

Using Case 1 twice, we will obtain two isotopies: G^1 carrying the inclusion to f', limited by $St^2(\alpha)$; and G^2 carrying f' to f, limited by $St(\alpha)$. Then, the combination of G^1 and G^2 is the isotopy, limited by $St^4(\alpha)$, that we desired; and the proof is complete.

The proof of the following corollary is similar to that of Lemma 37.1 in [1].

COROLLARY 2 (RELATIVE TRIANGULATION THEOREM). Let (M, M_0) be a pair of Q^{∞} -manifolds, where M_0 is a Q^{∞} -deficient subset of M, and let $h_0: M_0 \to K_0 \times Q^{\infty}$ be a triangulation of M_0 . Then, there is a triangulation $h: M \to K \times Q^{\infty}$ of M such that K_0 is a subcomplex of K and h extends h_0 .

4. Knotting Z-sets in Q^{∞} and R^{∞} . To conclude this paper, we will give a negative answer to the question NLC 6 in [2] which asks if there are Z-set unknotting theorems for Q^{∞} -manifolds and R^{∞} -manifolds. Before proceeding with the construction, let us set up some notation.

Define $Q_n = Q \times I_1 \times I_2 \times \cdots \times I_n$ and identify it with $Q_n \times \{0\}$ in Q_{n+1} . Let $A_n = Q \times \prod_1^n [0, 1/2^n]_i$ and $\mathring{A}_n = Q \times \prod_1^n [0, 1/2^n]_i$ be subsets of Q_n . Let R^{∞} denote the direct limit space $\lim R^n$. By the main result of [4], R^{∞} is homeomorphic to $\lim_{n \to \infty} \mathring{I}^n$, where $\mathring{I}^n = \prod_1^n [0, 1]_i$. We also define similarly the notion of R^{∞} -deficiency in R^{∞} .

LEMMA 2. The subset $X = \bigcup_{1}^{\infty} A_n$ of Q^{∞} is a Z-set in Q^{∞} . However, X is not Q^{∞} -deficient in Q^{∞} .

COROLLARY 3. The unknotting theorem for Z-sets in Q^{∞} is false.

PROOF OF COROLLARY 3. Recall that every Q^{∞} -deficient subset of Q^{∞} is also a Z-set. Now, we re-embed X into Q^{∞} by a Q^{∞} -deficient embedding. If the

unknotting theorem were true, then X would be Q^{∞} -deficient. This contradicts Lemma 2 above.

PROOF OF LEMMA 2. Part 1. X is a Z-set in Q^{∞} .

Fact 1. $X - (Q \times \{0\})$, where $0 \in \lim_{\rightarrow} I^n$, is a Q^{∞} -deficient subset of $Q^{\infty} - (Q \times \{0\})$.

Set $M_n = Q_n - \mathring{A}_n = Q \times [I^n - \prod_{i=1}^n [0, 1/2^n)]$. Then, M_n has the following properties:

(1) M_n is a compact Q-manifold,

(2) $X \cap M_n = (A_1 \cup A_2 \cup \cdots \cup A_n) - \mathring{A}_n$ is a Z-set in M_n , and

(3) $\lim M_n = \bigcup_{1}^{\infty} M_n = Q \times (I^{\infty} - \{0\}) = Q^{\infty} - (Q \times \{0\}).$

Therefore, $X - (Q \times \{0\}) = \bigcup_{1}^{\infty} (X \cap M_n)$ is an inductive Z-set of $Q^{\infty} - (Q \times \{0\})$. Thus, it is Q^{∞} -deficient by Proposition 1.

Fact 2. $Q \times \{0\}$ is Q^{∞} -deficient in Q^{∞} , so it is a Z-set.

Now, we will complete the proof of Part 1. Given an open cover α of Q^{∞} , we will construct a map $f: Q^{\infty} \to Q^{\infty} - X$ which is $St(\alpha)$ -close to the identity as follows.

First, by Fact 2 there is a map $g: Q^{\infty} \to Q^{\infty} - (Q \times \{0\})$ which is α -close to id. Secondly, if α_0 denotes the open cover $\{U \cap (Q^{\infty} - (Q \times \{0\})) | U \in \alpha\}$ of $Q^{\infty} - (Q \times \{0\})$, then from Fact 1 there is a map $h: Q^{\infty} - (Q \times 0) \to Q^{\infty} - X$ which is α_0 -close to id. Finally, the map $f = h \circ g: Q^{\infty} \to Q^{\infty} - X$ will be $St(\alpha)$ -close to id.

Part 2. X is not Q^{∞} -deficient in Q^{∞} .

Assume that $\lim_{n \to \infty} Q^j$ is a decomposition of Q^{∞} as in Lemma A. Then by Lemma 1 there is a sequence $\{n_j | j = 1, 2, ...\}$ such that $Q^j \subset Q_{n_j}$ for each j = 1, 2, ...

Now, it is clear that $X \cap Q_n \supseteq A_n$ and A_n is open in Q_n . So, since Q^j is a subspace of Q_n , the interior of $X \cap Q^j$ in Q^j contains the open set $A_n \cap Q^j$ of Q^j . Hence, $X \cap Q^j$ is not a Z-set in Q^j when $X \cap Q^j \neq \emptyset$. Since this is true for each decomposition, as in Lemma A, of Q^∞ , it follows that X is not an inductive Z-set in Q^∞ . Hence, it is not Q^∞ -deficient.

The proof of Lemma 2 is complete.

COROLLARY 4. The unknotting theorem for Z-sets in R^{∞} is false.

PROOF. Think of R^{∞} as $\lim_{n \to \infty} I^n$. Let $Y = \bigcup_{n \to \infty}^{\infty} B_n$, where $B_n = \prod_{i=1}^n [0, 1/2^n]_i$.

Just as in Part 2 of the proof of Lemma 2, we can show that if $R^{\infty} = \lim_{n \to \infty} M_n$, where M_n is a compact manifold as in Lemma A, then for some *n*, the interior of $Y \cap M_n$ in M_n is not empty. Thus, Y cannot be R^{∞} -deficient in R^{∞} . Moreover, since $Q^{\infty} - X = Q \times (R^{\infty} - Y)$ and since X is a Z-set in Q^{∞} by Lemma 2, we can show easily that Y is a Z-set in R^{∞} . The corollary follows by the same argument as for Corollary 3.

References

1. T. A. Chapman, Lectures on Hilbert cube manifolds, CBMS Regional Conf. Ser. in Math., no. 28, Amer. Math. Soc., Providence, R. I., 1976.

2. R. Geoghegan, Open problems in infinite-dimensional topology, 1979 (preprint).

VO THANH LIEM

3. R. E. Heisey, Manifolds modelled on the direct limit of Hilbert cubes, Proc. 1977 Georgia Topology Conf., Academic Press, New York, 1979, pp. 609-619.

4. R. E. Heisey and H. Torunzcyk, On the topology of direct limits of ANR's (preprint).

5. V. T. Liem, An α -approximation theorem for Q^{∞} -manifolds, General Topology Appl. (to appear).

6. S. Ferry, The homeomorphism group of a compact Hilbert cube manifold is an AR, Ann. of Math. (2) 106 (1977), 101-119.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA, UNIVERSITY, ALABAMA 35486