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AN UNKNOTTING THEOREM IN Q "MANIFOLDS

VO THANH LIEM

Abstract. In this note, we prove the following unknotting theorem.

Theorem. Let M be a Q ^-manifold and let F: X x / -» M be a homotopy such

that F0 and F¡ are Q '"-deficient embeddings. Then, there is an isotopy H: M X / —»

M such that H0 = id and Hx ° F0= Fx. Moreover, if F is limited by an open cover a

of M and is stationary on a closed subset X0 of X, then we may choose H to also be

limited by St4(o) and to be the identity on F(X0 X /).

However, a similar unknotting theorem for Z-embeddings does not hold true in

Q°° and*00.

1. Introduction and definitions. Given an open cover a of a topological space Af,

two maps/, g: X -* Af are said to be a-close if for each x E X, there is an open set

U E a such that fix), g(x) E U. A homotopy H: X X I -» Af is said to be

a-limited if for each x E X, there is an open set U G a such that H(x X I) c U.

A closed subset X of Af is said to be a Z-set in Af provided that for any

prechosen open cover a of Af, there is a map/: Af -» Af — X that is a-close to idM.

The Hilbert cube Q is the countably infinite product n,°[0, 1]. For basic results in

g-manifold theory, we refer to [1].

Let {Qn} be a sequence of copies of the Hilbert cube such that Q„ is a Z-set in

ôn+i f°r eacn *• We define ß°° to be the direct limit space lim{£?n} endowed with

the direct limit topology. It follows from the Z-set unknotting theorem of Ander-

son, Lemma C below, that this space is unique up to homeomorphism. By a

Q°°-manifold we mean a paracompact space which is locally homeomorphic to

0°°.
In [3], Heisey proved the following lemma.

Lemma A. Every Q '"-manifold M is equal to Urn Af„ = U î° Af„, where each Mn

is a compact Q-manifold, and a Z-set in Mn+l.

From this lemma we may introduce the following notion. A subset X of a

£? "-manifold Af is said to be an inductive Z-set in Af provided that there is a

decomposition M = lim M} as in Lemma A such that X n Mj is a. Z-set in Af, for

each / =1,2,-

As in [5], a closed subset X of a Q "-manifold Af is said to be g ""-deficient if

there is a homeomorphism h:  M —* M X g"  such that h(X) c Af X 0. The
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concept of Q "-deficiency is equivalent to that of ß-deficiency in the Q "-manifold

theory [5].

We now state some known results that we will use extensively in the sequel.

Lemma B [1, Theorem 3.1]. Let X and Y be locally compact, separable, metric

spaces.

(i) If A c X is closed and A = U f An, where An c X is a Z-set, then A G X is

a Z-set.

(ii) IfA<zU<zX,AciX closed, U open and A c U is a Z-set, then A c X is a

Z-set.

(iii) If A c X is a Z-set, X is an ANR and U c X is open, then A n U is a Z-set

in U.

Lemma C [1, Theorem 19.4]. Let M be a Q-manifold, A be locally compact and

let: F : A X I —» Af be a proper map such that F0 and Fx are Z-embeddings. Then,

there is an isotopy H: M X I —* Af such that H0 = id and Hx ° F0 = Fx. Moreover,

if F is limited by an open cover a of M, then we may choose H to also be limited by a.

The Main Theorem of this note is the controlled relative version of the unknot-

ting theorem for Q "-deficient embeddings in Q "-manifolds, which is similar to

Lemma C above. Besides that, it will be shown that the notion of Q "-deficiency is

equivalent to that of inductive Z-embedding in Q "-manifolds.

Finally, the author is very grateful to D. W. Curtis for criticism of an early

version of this paper.

2. Inductive Z-embedding and Q " -deficiency.

Proposition 1. A subset XofaQ "-manifold N is Q ""-deficient in N if and only if

X is an inductive Z-set in N.

Proof, (i) Let A' be a Q "-deficient subset of N. We will show that X is an

inductive Z-set in N. We may assume X a N X 0 d N X Q. Let N = K X Q°°,

where K is a locally finite complex (see [3]), and let K = U ? K„, where Kn is a

compact subcomplex of Kn+X for each n. Now, let N„ denote K„ X Qn X Q, then

^nJV.C^XÖ^O is a Z-set in Nn. Moreover, it is clear that N X Q

= lim(iV„, /„).

(ii) Let X be an inductive Z-set in N. We will construct a homeomorphism h:

N^>N X Q such that h(X) c N X 0. Assume that N = lim Nn such that Xn = X

n A^„ is a Z-set in Nn. We will construct a sequence of homeomorphisms h„:

N„^> Nn X Q such that for each n

(a) hn(Xn) CN„X0, and

W4m.iI*.-A-
Then, the homeomorphism h that we desired will be lim hn, and the proof will

be complete.

1. Construction of hv From Lemma C, there is a homeomorphism/,: Nx —» N¡ X

Q such that fx(Xx) c JV, X 0. Since the projection it:  Nx X Q -* Nt X 0 is a
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near-homeomorphism, so is the map itfx. Thus, ttfx is homotopic to a homeomor-

phism gx: NX^>NX X 0. Let us define hx = (gxx X idß) «/,: NX^>NX X Q. Then

A, is a homeomorphism enjoying the following properties:

(a,) hx(Xx) CJV.XO, and

(ßx) hx =: inclusion i, where i(x) = (x, 0).

2. Construction of h2. Recall that A^, is a Z-set in N2. Let /',: Nx -» N2 denote the

inclusion map. Similar to the construction of hx, there is a homeomorphism h'2:

N2^>N2X Q such that

(aj) h'^XJ c N2X0, and

( ßj) A2 ~ inclusion j, i(jc) = (x, 0).

Then it can be shown that the Z-embedding h'2 ° /', « hxx is homotopic to the

inclusion map i, X idß : Nx X Q -> N2X Q. Therefore, by Lemma C, there is a

homeomorphism

4>2: N2 X Q -^ N2 X Q

such that i|/2 » h'2 ° i, ° A¡~' = /, X idß.

So, if we define h2 = t|/2 ° A2, then the following diagram commutes.

*i

However, we may lose the property h"(X2) c N2 X 0.

Now, we are going to fix h2 to obtain a homeomorphism h2 as we desired.

Consider the Z-set (JV,XÖ)u ¿2(^2) = A2(*i U XJ in N2X Q. It is clear

that h'2\X2 - Xx) = h'XXj) - (Nx X Q) and we can homotope h2(X¿ into N2x0

(rel. A2 (X,)). Then, by the relative Z-embedding approximation theorem [1, Theo-

rem 18.2], we can assume that the final map of this homotopy is a Z-embedding.

Moreover, this homotopy can be extended over NXX Qby the identity.

Again by Lemma C, there is a homeomorphism <¡¡2: N2 X Q -* N2X Q such that

(1) <b2\Nx X Q = id,

(2) <*>2(A2'(*2)) C N2 X 0.

Thus, if we define h2 = <¡¡2 ° h2, then h2 has the desired properties (a) and (b).

3. Construction of hn. hn is constructed similarly from hn_x when n > 3.

The proof of Proposition 1 is now complete.

Lemma 1. Let {Xn} be a sequence of Hausdorff spaces such that Xn is a subspace of

Xn+X, and let X = lim Xn. If K is a compact subspace of X, then there is an integer k

such that K C Xk.

A closed subset X of Af is said to be strongly negligible if for each open cover a

of Af there is a homeomorphism /: Af -» Af — X such that / is a-close to idw.

Corollary 1. Every compact subset K of a Q "-manifold M is Q '"-deficient, and

therefore strongly negligible.

i, x id

N2

IK

N2XQ
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Proof. Consider Af = lim Af„ as in Lemma A. Then, K c Mk for some k, and

K is a Z-set in Af„, n > k. It follows that K is an inductive Z-set, and therefore

Q "-deficient in Af. By [5, Theorem 4.2], every Q "-deficient set in Af is strongly

negligible.

Proposition 2. If X and Y are Q ""-deficient subsets of a Q ""-manifold Af, then so

is X u Y.

Proof. By use of Lemma 1 and Proposition 1 above, we can assume that

Af = lim Af, and Af = lim Mj such that the following hold.

(1) Xt = X n Aff is a Z-set in Af„ for each i = 1,2,_

(2) Yj = Y n Af/ is a Z-set in MJ, for each / = 1, 2,_

(3) Af,. is a Z-set of Af/, i = 1,2,_

(4) Af/ is a Z-set of MJ+ „ j = 1,2,_

(5) Af, — Y is not empty for each /' = 1, 2,.. . .

We will construct a sequence of compact (^-manifolds Af such that

(i) MJ c M> C MJ+X c MJ+X c Af+l . . ., for all/ = 1, 2, . . . ,

(ii) Mj is a Z-set of MJ+ x, and

(iii) (X u Y) n MJ is a Z-set in Af.

Then the proposition follows from Proposition 1, since X u Fis now an inductive

Z-set in Af = lim Af.

a. Construction of Af'. Recall Xx and Yx are Z-sets in Af,'. However, X[ = X n

A/,' is not necessarily a Z-set in Af,'.

Since AfÍ is a Z-set in Af2, Af[ - Y is a Z-set in Af2 — Y (Lemma B). By the

collar theorem [1, Theorem 16.2], there is an open embedding

X: (Af,' - Y) X [0, 1) -► Af2 - Y

such that X(x, 0) = x for all x E M'x - Y.

Let <J>: Af,' -> [0, ±] be a map such that <¡¡x(0) = Yx. Then

Claim. The pinched collar Af ' = {A(jc, t)\x G Af,' - F, 0 < t < <p(x)} u F, of

Af,' in Af2 at F, has the following properties.

(1) Mx is a g-manifold homeomorphic to Af,', since the natural projection/?:

Af ' — F —> Af,' — F may be approximated by a homeomorphism which extends by

the identity on F,.

(2) F, = Y f\ Mx and F, is a Z-set in Af \ since F, c M,' is a Z-set.

(3)XX = À" n Af'isaZ-setinAf1.

In fact, we can write Xx as

X1 =[X n (A/1 - F,)] U (A" n F,).

Then, X n F, is a Z-set in Af'. Moreover, we can easily see that X n (Af ' — F,)

is the union of a sequence of compact Z-sets in Af'. Thus, the property (3) follows

from Lemma B(i).

b. Construction of Af. Similarly, the Ö-manifold MJ will be a pinched collar of

Mj in MJ+X at Yj such that (X u F) n Af = Jf u Yj is a Z-set in Af. Moreover,

we can show that Af is a Z-set of Af+' as follows. For fixing our idea, we assume
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that y = 1 and we have the following inclusions

Af1 C Af2C M'2E Af2.

Observe that M2 - Y = M2 - Y2 is a Z-set in Af2 - Y = M2 - Y2, since Af2 is a

pinched collar of Af2 in Af3 at F2. Hence, Af1— F = Af ' — F, is a Z-set in

Af2 - F, since Af1 — F is closed in Af2 — F. Using Lemma B(ii), we see that

Af ' — F, is the union of sequences of Z-sets in Af2. Then, Lemma B(i) again shows

that Af ' = (Af ' - F,) u F, is a Z-set in Af2, since F, c F2 is also a Z-subset of

Af2. Therefore, all desired properties of the sequence { Af } are verified.

We note that in contrast to Lemma B(i), the closed countable union of Q°°-

deficient subsets of a Q "-manifold need not be g "-deficient. For example,

consider Q"" = lim Qn and the countable union U," Q„ = Q°°.

3. Unknotting theorem. Let a be an open cover of Af and U E a. We define

St(U, a) = U {V E a\ U n V ¥= 0). By St(a) we will mean the cover {St(£/, a)\ U

E a}. Inductively, we define St"+1(a) = St(St"(a), a).

Main Theorem. Let X be a Q""-deficient subset of a Q""-manifold M and let f:

X ^> M be a Q""-deficient embedding homotopic to the inclusion map i: X c Af.

Then, there is an isotopy F: M X I —» Af such that the following hold.

(i) F0 = idw.

(ii)Fx\X =f.
(iii) Given an open cover a of M, if the homotopy H: i ~ / is limited by a, then the

isotopy F can be chosen to be limited by St4(a).

(iv) Moreover, if H,\X0 = inclusion on a closed subset X0 of X for each t G I, then

F, can be chosen to be the identity on X0for each t.

Proof. Case 1. We assume that f(X - X0) n (A" - Ara) = 0.

Let X denote the quotient space (A" X I)/~, where (x, t) ~ (x, 0) if x E X0.

Let us define H: X —» Af by H([x, t]) = H(x, t). By Proposition 2, the restriction of

H to A* X {0, 1}/— is a Q "-deficient embedding. By the relative approximation

theorem in Q "-manifolds [5, Theorem 3.3], we can assume that H is a Q "-defi-

cient embedding and the induced homotopy, say H, now is limited by St(a). We

think of M as M X Q, and we assume that H(X X I) c Af X 0. Let Af = lim Af„

as in Lemma A, and let us define

Zk = Hx(Mk XQ) = {(x, t) E X X I\H(x, t)EMkXQ),

and Xk = px(Zk) where px: X X I-> X is the projection. Now, since Zk =

Zk/—= H~x(Mk X Q) is compact, it follows that Zk and Xk are compact, and we

may assume that H(Xk X I) c Mk+X X Q.

By the last part of this proof, we can assume that there is a sequence of compact

g-manifold A^'s such that for each k = 1, 2,. . ., (¿) NkZ) MkX Q, (b) Nk is a

Z-set in Nk+X, (c) H,: Xk^>Nk is a Z-embedding for each 16/, and (d)

H[(X - Xk) X I] n Nk = 0. Therefore, the isotopy of Af = lim Nk that we de-

sired will be constructed inductively on the sequence {Nk} by use of the fiber-

version of the Z-sets unknotting theorem [6] that can be restated as follows. "Let X

be a compact Z-subset in a g-manifold N, and let if,: X-* N (t E I) be a
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continuous family of Z-embeddings such that H0(x) = x, then H extends to an

isotopy H of N with H0 = id^."

Now, to complete the proof, we will construct such a sequence {Nk} from the

given sequence {Mk X g}as follows. For fixing our idea, let us work with k = I.

Define F = (Af, X Q) \j H(XX X I). Then, F is a Z-set in Af2 X Q, since both

Mx X Q and H(XX X I) are Z-sets in Af2 X Q. Let W be a compact g-manifold

neighborhood of a copy of F in g such that (i) F is a Z-set in W, and (ii) the

inclusion map F c Af2 X Q has an extension over W, say g. Since F is a Z-set in

Af2 X Q, we can assume, by the relative Z-embedding approximation theorem

[1, Theorem 18.2], that g is a Z-embedding such that g(W — Y) n F = 0. If we

define A^, = g(W), and similarly for Nk (k > 1), then the sequence {Nk} has all

above properties. Hence, the proof of Case 1 is now complete.

Case 2. General case. Assuming again that X u f(X) c Af X 0, there is a

Q"-deficient embedding/': X -^ M X Q"" such that

(i)/'|A"0 = inclusion,

(ii)/'(A" - A0) n (Af X 0) = 0, and

(iii) /' is a-homotopic to / (rel. X0).

So,/' is St(o)-close to the inclusion X c M X Q ".

Using Case 1 twice, we will obtain two isotopies: Gx carrying the inclusion to/',

limited by St2(a); and G2 carrying/' to/, limited by St(a). Then, the combination

of Gx and G2 is the isotopy, limited by St4(«), that we desired; and the proof is

complete.

The proof of the following corollary is similar to that of Lemma 37.1 in [1].

Corollary 2 (Relative Triangulation Theorem). Let (Af, Af0) be a pair of

Q ""-manifolds, where M0 is a Q""-deficient subset of M, and let h0: M0 —» K0 X Q""

be a triangulation of M0. Then, there is a triangulation h: M —» K X Q°° of M such

that K0 is a subcomplex of K and h extends h0.

4. Knotting Z-sets in Q " and R ". To conclude this paper, we will give a negative

answer to the question NLC 6 in [2] which asks if there are Z-set unknotting

theorems for Q "-manifolds and R "-manifolds. Before proceeding with the con-

struction, let us set up some notation.

Define Q„ = Q X Ix X I2 X • •• x/„ and identify it with Qn X {0} in Qn+X.

Let A„ = Q X II? [0, 1/2"],. and Àn = Q X Wx [0, 1/2"),. be subsets of Q„. Let R""
denote the direct limit space lim R". By the main result of [4], R " is homeomor-

phic to lim I", where /" = R" [0, 1),. We also define similarly the notion of

R "-deficiency in R "".

Lemma 2. The subset X = Uf4 of Q"" is a Z-set in Q". However, X is not

Q ""-deficient in Q ".

Corollary 3. The unknotting theorem for Z-sets in Q " is false.

Proof of Corollary 3. Recall that every Q "-deficient subset of Q " is also a

Z-set. Now, we re-embed X into  Q" by a Q"-deficient embedding.  If the
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unknotting theorem were true, then X would be Q "-deficient. This contradicts

Lemma 2 above.

Proof of Lemma 2. Part 1. X is a Z-set in Q°°.

Fact 1. X - (Q X {0}), where 0 G lim /", is a Q"-deficient subset of Q°° -

(Q X {0}).
Set Af„ = Q„ - Àn = Q X [I" - JTX [0, 1/2")]. Then, M„ has the following

properties:

(1) Af„ is a compact (?-manifold,

(2) X n Af„ = (A, u A2 u • • • U An) - Ân is a Z-set in Af„, and

(3) lim A/„ = UT Mn = Q X (/" - {0}) = Q°° - (Q X {0}).

Therefore, X - (Q X {0}) = Uf (x n Af„) is an inductive Z-set of Q°° - (Q X

{0}). Thus, it is Q "-deficient by Proposition 1.

Fact 2.QX {0} is (¿""-deficient in Q"", so it is a Z-set.

Now, we will complete the proof of Part 1. Given an open cover a of (?", we

will construct a map /: Q"" —> Qx — X which is St(a)-close to the identity as

follows.

First, by Fact 2 there is a map g: g " -> Q°° — (Q X {0}) which is a-close to id.

Secondly, if a0 denotes the open cover {U n (Q°° - (Q X {0}))|i/ G a} of Q"

- (Q X {0}), then from Fact 1 there is a map *: Q°° - (Q X 0)^> Q"" - X

which is a0-close to id. Finally, the map / = h ° g: Q°° -» Q°° — X will be

St(a)-close to id.

Part 2. X is not Q ""-deficient in Q ".

Assume that lim Q' is a decomposition of Q " as in Lemma A. Then by Lemma

1 there is a sequence {nj\j =1,2,...} such that Q' c Q. for eachy' =1,2,....

Now, it is clear that X n Qn. D A^ and An is open in Q . So, since Q/ is a

subspace of Q , the interior of X n Qf in Q' contains the open set A n Q/ of QJ.

Hence, X n QJ is not a Z-set in Q/ when X n Q* ^ 0. Since this is true for each

decomposition, as in Lemma A, of Q ", it follows that X is not an inductive Z-set

in Q ". Hence, it is not Q "-deficient.

The proof of Lemma 2 is complete.

Corollary 4. The unknotting theorem for Z-sets in R " is false.

Proof. Think of R " as lim /". Let F = \J? Bn, where B„ = DJ», [0, 1/2"],..

Just as in Part 2 of the proof of Lemma 2, we can show that if R " = lim Af„,

where Af„ is a compact manifold as in Lemma A, then for some n, the interior of

F n Af„ in Af„ is not empty. Thus, F cannot be R "-deficient in i?". Moreover,

since Q"" - X = Q X (R"" - Y) and since X is a Z-set in Q°° by Lemma 2, we

can show easily that F is a Z-set in Rx. The corollary follows by the same

argument as for Corollary 3.
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