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(CA) CLOSURES OF ANALYTIC GROUPS

DAVID ZERLING

Abstract. An analytic group G is called (CA) if the group of inner automorphisms

of G is closed in the Lie group of all bicontinuous automorphisms of G. We

introduce the notion of a (CA) closure for an analytic group and show that every

analytic group possesses a (CA) closure. The definition of uniqueness for such a

(CA) closure is developed and a sufficient condition for uniqueness is given.

We also develop new sufficient conditions for a closed normal analytic subgroup

of a (CA) analytic group to be (CA).

1. Introduction. By an analytic group and an analytic subgroup of a Lie group,

we mean a connected Lie group and a connected Lie subgroup, respectively. If G

and H are Lie groups and <¡¡ is a one-to-one (continuous) homomorphism from G

into H, <¡¡ will be called an immersion. <¡¡ will be called closed or dense, as <¡¡(G) is

closed or dense in H. G0 and Z(G) will denote the identity component group and

center of G, respectively.

If G is an analytic group, A(G) will denote the Lie group of all (bicontinuous)

automorphisms of G, topologized with the generalized compact-open topology. G

will be called (CA) if 1(G), the Lie group of all inner automorphisms of G, is closed

in A(G). It is well known that G is (CA) if and only if its universal covering group

is (CA).

If G is a normal analytic subgroup of an analytic group H, then each element h

of H induces an automorphism of G, namely, g (-> hgh'x. We will denote this

homomorphism from H into A(G) by pGH. IH(h) will denote the inner automor-

phism of H determined by h E H. More generally, if A is a subset of H, IH(A) will

denote the set of all inner automorphisms of H determined by elements of A.

IH(H) will be written as 1(H), and the mapping h h» IH(h) of H onto 1(H) will be

denoted by IH.

If N is an analytic group and H is an analytic subgroup of A(N), then N ® H

will denote the semidirect product of N and H. On the other hand, if G is an

analytic group containing a closed normal analytic subgroup N and a closed

analytic subgroup H, such that G = NH, N n H = {e}, and such that the restric-

tion of pNG to H is one-to-one, we will frequently identify G with Af © pNG(H) and

H with pNG(H), that is, we may write G = N ® H.

In Zerling [6, The Main Structure Theorem], and [7, Lemma 2.11] the author

proved the following theorem:
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Theorem A. Let G be a non-(CA) analytic group. Then there is a maximal (CA)

closed normal analytic subgroup M of G, a toral subgroup T in A(M), and a dense

vector subgroup V of T, such that:

(i) P = Af ©T is a (CA) analytic group.

(ii) G is isomorphic to the dense analytic subgroup M ® V of P.

(iii) Z(G) is contained in M.

(iv) Z0(G) = Z0(P).

(v) Each automorphism a of G can be extended to an automorphism e(o) of P, such

that e: A(G) —» A(P) is a closed immersion.

In this paper we shall improve upon (iv) by showing that Z(G) = Z(P). We shall

develop a sufficient condition for a non-(CA) analytic group to possess a unique

(CA) closure, as defined in §2, and we show that each non-(CA) analytic group

contains a closed non-(CA) analytic subgroup satisfying this sufficient condition.

We shall also develop new sufficient conditions for a closed normal analytic

subgroup of a (CA) analytic group to be (CA).

The following results of Goto will be very important to us.

Goto [2, (5.2)]. Let L be an analytic group and let N be a closed normal analytic

subgroup of L. If L/N is a toral group, then there is a toral group T in L such that

L = NT,NnT= {£•}.

Goto [2, Theorem 2]. Let G be a dense analytic subgroup of an analytic group L

and suppose that G contains a maximal normal analytic subgroup N which contains

the commutator subgroup of G and is also closed in L. Then there is a closed vector

subgroup V of G, such that G = NV, L = NV, where N n V = {e) and V is a toral

subgroup of L.

Remark. [2, (5.2)] and the consequent Theorem 2 of Goto above are generaliza-

tions of weaker results in Goto [1]. In particular N n V was only shown to be

finite. Since Af n V = {e} now, we can improve upon (iv) of Theorem A.

2. Existence and uniqueness of (CA) closures.

Definition. Let G be an analytic group. By a (CA) closure of G we mean a triple

(G,f, L), where L is a (CA) analytic group, /: G -» L is a dense immersion, and

Z(f(G)) = Z(L).
Let G be a non-(CA) analytic group and let us adopt the notation of Theorem A.

Let M' be a maximal analytic subgroup of 1(G) which contains the commutator

subgroup of 1(G) and is closed in A(G). Then from Goto [2, Theorem 2] there is a

closed vector subgroup V of 1(G), such that 1(G) = M' V, 1(G) = Af ' V', M' n

V = {e}, and 7" = V is a toral subgroup of 1(G). In the proof of Theorem A we

have 7c(Af) = A/', IG(V) = V and pGP(T) = T, where pGP is 1-1 on T.

To see that Z(G) = Z(P) we let (m, r) E Z(P) where m E M, t G T. Then

pGp(m) ' Pgp(t) = e- Therefore pGP(r) = e and so t = e. Hence, Z(G) = Z(P). We

now have the following theorem.

Theorem 2.1. Every analytic group possesses a (CA) closure.
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Definition. Let G be an analytic group. Two (CA) closures (G, \px, Lx) and

(G, i//2, L2) of G will be called equivalent if there exists an automorphism a of G

and an isomorphism ß from Lx onto L2 so that ß ° \px = \f/2 ° a. We will say that G

possesses a unique (CA) closure if all (CA) closures of G are equivalent.

Remark. From van Est [4, Theorem 2.2.1] we know that if G is a dense (CA)

analytic subgroup of an analytic group L, then Z(L) =Z(G), L = G- Z(G), and

L is also (CA). Hence, it is clear that each (CA) analytic group has a unique (CA)

closure, namely itself.

Theorem 2.2. Let G be a (CA) analytic group and let N and H be a closed normal

analytic subgroup and a closed analytic subgroup of G, respectively, such that

G = Af if, N n H = {e}. Let it denote the natural projection of G onto H. If

it(Z(G)) is closed in H, then N is (CA).

Proof. Suppose that A" is non-(CA). Let A" be a (CA) analytic group containing

Af as a dense subgroup, where Af' is to be constructed according to Theorem A.

From Theorem 2.1 we know Z(Af) = Z(Af'). Let e: A(N) -► /I(A") be the extension

homomorphism of Theorem A. Let ß = e ° pNG. Then the restriction of ß to H is a

homomorphism of H into ^4(Af'), and we let G' denote the semidirect product of

Af' and H that is determined by ß. Then G is dense in G'.

Let {(nk, hk)} be a sequence of central elements in G converging in G' to («', h).

Since it(Z(G)) is closed in H, there exists an element ñ in Af so that («, h) is in

Z(G). Since n'ñ~x = («', h) • (ñ, h)'1, we see that n'ñ~x is in Z(G') n A". Therefore,

n'ñ~x is in Z(Af'). Since Z(N) = Z(N'), n'ñ~x is in Z(Af). Therefore, since n'ñ~x is

already in Z(G'), it follows that n'ñ~x E Z(G). So («', h) = z • (ñ, h), z E Z(G). So

Z(G) is closed in G'. Since G is (CA), G = G' by van Est [4, Theorem 2.2.1].

Hence Af = Af'. Therefore Af is (CA).    Q.E.D.

Corollary. Let G be a (CA) analytic group and let N be a closed normal analytic

subgroup of G. If (i) Z(G) n Af is a uniform subgroup of Z(G), and (ii) G/N is a

toral group, then N is (CA).

Proof. From Goto [2] there is a toral group T of G such that G = N • T,

N n T = {e}. Since Z(G) n Af is uniform in Z(G), it(Z(G)) is compact, where it

is the natural projection of G onto T. Therefore, Af is (CA) from Theorem 2.2.

Q.E.D.

Theorem 2.3. Adopting the notation of Theorem A let G = MV be a non-(CA)

analytic group. Let f: G —» L be a dense immersion of G into a (CA) analytic group L.

Suppose Z(f(G)) is a uniform subgroup of Z(L). Then there is a closed vector

subgroup WofG such that G = MW, L = f(M) ■ f(W),/(Af) n fjw) = {e}, and

f( W) is a toral group.

Proof. From Theorem 2.1 of Zerling [7] we know that f(M) = f(M) ■ f(Z(G)).

Therefore f(M) is closed in L. Let J be a maximal analytic subgroup of G, which

contains M and for which f(J) is closed in L. Let it denote the natural projection of

/ on V. Then J = Af U, where U = tt(J).
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From Goto [2, Theorem 2] there is a closed vector subgroup IF of G so that

G = JW,L= f(J) ■ f(W), f(J) n f(W) = {e}, and f(W) is a toral group. Since

Z(f(G)) is contained in/(Af) and is uniform in Z(L), it'(Z(L)) is compact in f(W),

where it' is the natural projection of L onto /( W). By Theorem 2.2, J is (CA), since

L is (CA). But M is a maximal (CA) closed normal analytic subgroup of G from

Theorem A. Therefore, J = M.    Q.E.D.

Theorem 2.4. Let G be a non-(CA) analytic group and suppose that G/Z(G) is

homeomorphic to Euclidean space. Then G has a unique (CA) closure.

Proof. Let/: G -* P be the dense immersion of Theorem 2.1. That is, G = AfF

s M © pMG(V),   P = M © pMG(V),   and /:   G -+ P   is   given   by f(mv) =

(m, pMG(v)). From the convention in the Introduction we will write G = M © V

and P = M © f(V). Let (G, «//, L) also be a (CA) closure of G. We will show that

(G,f, P) is equivalent to (G, »//, L).

Since Z(«/<(G)) = Z(L), we know from Theorem 2.3 that there is a closed vector

subgroup IF of G so that G = Af IF, L = «//(A7) ■ >p(W), «//(Af ) n 4>(W) = {e}, and

«//(IF) is a toral group. Since Z(L) = Z(«//(G)) C «//(Af), pGL is 1-1 on «//(IF).

Therefore L = «//(A/) © »//( W).

Let Af' = IG(M), W' = 7G(1F), and V = 7G(F). We see that

~lW) = M' ■pGP(Kv)) = M'V',    A/'nF' = {e).

But 1(G) = A/' • pGiM^Ö)= A/' • ÊF', A/' n W' = {<?}. Therefore, F' and W'
are each maximal toral subgroups of 1(G). Hence, there is an element y of 7(G) so

that W' = yV'y~x. But Af is y-stable. Therefore y\M E A(M).

Now yVjyj1 c 1(G) = M' W', since 7(G) is normal in 7(G). On the other hand

yF'y~' c W and W'n M' = {e}. Hence yF'y-' = IF'. Consequently y\M ■ /(F)-

y|* =^(»F)andyL-/(F) ■ y|¿ = «//(IF).

Let)8:P^Lbegivenby

/S(W, r) = («//(y(w)), yI,, • t • y|¿),       m G Af, t G /(F) .

Then y8 is an isomorphism of P onto L, and since pWG(y(ü)) = i\m ' Pmg(v) • y|]¿,

we see that ß ° f = \p ° y. Hence, (G, /, P) is equivalent to (G, «//, L).   Q.E.D.

Remark. Since a semisimple analytic subgroup of the general linear group

possesses a nontrivial compact subgroup, we see that the condition of Theorem 2.4

that G/Z(G) is homeomorphic to Euclidean space implies that G is solvable.

3. Abundance of groups with unique (CA) closure.

Lemma 3.1. Let G = AfF be a non-(CA) analytic group as in Theorem A.

(i) If Z(M) is connected, then Z(G) is connected.

(ii) If M/Z(M) is homeomorphic to Euclidean space, then G/Z(G) is homeomor-

phic to Euclidean space.

Proof, (i) Since Z(M) is a connected abelian group containing Z(G) we let S be

a minimal abelian analytic subgroup of G which contains Z(G) and is contained in

Z(M). From Goto [2, (7.2) and (8.1)] there is a closed vector subgroup IF of G
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such that G = MW, Af n W = {e}, and a closed abelian analytic subgroup H of

G (called a gm-torus of G) such that 77 contains both S and PF. (The existence of

if containing S follows from Goto's (8.1) and the existence of W, for such an 77,

follows from Goto's (7.2)). Therefore, S commutes with each element of Af and W,

i.e., S = Z(G). Thus, Z(G) is connected.

(ii) Since M/Z(M) is homeomorphic to Euclidean space, Z(Af) and, therefore,

Z(G) are connected. Since M/Z(M) = (M/Z(G))/(Z(M)/Z(G)), we can show

that M/Z(G) is homeomorphic to Euclidean space, if we can show that

Z(M)/Z(G) is a vector group.

To this end we will show that Z(G) contains the maximal toral subgroup of

Z(Af ). F acts on Z(Af ) via z h» vzv~x, z E Z(M), v E V. Let K be the maximal

toral subgroup of Z(Af ). Then vKv~x = K for all v E V. Since V is connected

vkv'x = k for all t> G F, k G K. Therefore, each k E K commutes with the

elements of Af and F, i.e., K c Z(G). Hence Af/Z(G) is homeomorphic to

Euclidean space.

Since Af/Z(G) contains all of the maximal compact subgroups of G/Z(G), we

see that G/Z(G) is homeomorphic to Euclidean space.   Q.E.D.

Lemma 3.2. Let N be a nilpotent analytic group and let V be a vector subgroup of

A(N), such that V is a toral group. Then

(ï)G = N © F is non-(CA).

(ii) G = Af © F is (CA) and Z(G) = Z(G) c N.

(iii) 7(G) = IG(N) ■ IJV), where IJv) is a toral group, IG(N) nlGJV) = {e}

and 1(G) = 7G(Af) • 7G(F), where IG(V) is a vector subgroup of IG(V).

Proof. Since N is nilpotent and therefore (CA), 7(Af) is a closed subgroup of

A(N), which is homeomorphic to Euclidean space. Hence, V n I(N) = {e}. This

implies that the center of Af © F is contained in N. Therefore, G = N © F is

dense in G = N ©  F with Z(G) = Z(G). Hence, G is non-(CA) by van Est [4].

Since Af is nilpotent, IG(N) and IG(N) are closed in A(G) and A(G), resp.

Therefore, G is (CA) since IG(V) is compact. Also 7(G) = 7G(Af) • 7G(F), since

7G( V) = 7G( V) is a toral group.

Since Z(G) C Af, IG(N) n 7G(F)= {e}, and 7G(F) is a vector subgroup of

7G(F). (Consequently, IG(N) is a maximal analytic subgroup of 7(G) which

contains the commutator subgroup of 7(G) and is closed in A(G).)   Q.E.D.

Theorem 3.1. Every non-(CA) analytic group L contains a closed non-(CA)

analytic subgroup G such that G/Z(G) is homeomorphic to Euclidean space (and

therefore G has a unique (CA) closure). Moreover, if L is solvable, then G is normal

in L.

Proof. Since L is non-(CA), the radical of L, R, is also non-(CA) from van Est

[5, Theorem 2a]. Let R = MV be the decomposition of Theorem A, and let Af

denote the closure of the commutator subgroup of 7?. Since R is solvable, Af is

nilpotent and therefore (CA). From Zerling [6, Theorem 3.2] F acts effectively on

A/. Since the closure of IR(V) in A(R) is a toral group, and since N is characteristic
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in 7?, we see that the closure of pNR(V) in A(N) is a toral group. Hence, Lemma 3.2

shows that G = N V is a non-(CA) closed normal analytic subgroup of 7?. We want

to show that G = N © V is the "Af © F" type decomposition of Theorem A.

However, this is an immediate result of Lemma 3.2.

Hence, since Af is nilpotent, N/Z(N) is homeomorphic to Euclidean space.

Therefore, G/Z(G) is homeomorphic to Euclidean space from Lemma 3.1.

Q.E.D.
Remark. In Theorem 3.1 we simply wanted to show that every non-(CA)

analytic group contains some non-(CA) analytic subgroup possessing a unique

(CA) closure. The relationship between G and L actually exists in the relationship

between G and 7?, the radical of L. This relationship is discussed in greater detail

(including some open questions) in Stevens [3].

Conjecture. In the proof of Theorem 2.4 we were able to show that W' =

yF'y"', y G 7(G), only because we knew V and W' were each maximal toral

subgroups of 7(G). However, they were assured of being maximal toral subgroups

only because Af ' was homeomorphic to Euclidean space due to our hypothesis that

G/'Z(G) is homeomorphic to Euclidean space.

The author conjectures that every non-(CA) analytic group possesses a unique

(CA) closure. The existence of the above y and, therefore, of the unique (CA)

closure would still be assured without knowing that Af' was homeomorphic to

Euclidean space, if we were able to prove the following: Let L be an analytic

subgroup of GL(n, R) and let Af be a closed normal analytic subgroup of L.

Suppose F and W are each closed vector subgroups of L such that (i) L = AfF =

MW, and (ii) L = AfF = Af W, M _n F = Af n W = {ej, where V and W are

toral groups. Then there exists y G L such that yFy-1 = W.
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