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A modp WHITEHEAD THEOREM

STEPHEN J. SCHIFFMAN

Abstract. A modp Whitehead theorem is proved which is the relative version of a

basic result of localization theory. It is applied to give a family of fibrations which

are also cofibrations.

0. Introduction. The classic work of Serre showed how one could generalize the

Hurewicz and Whitehead theorems. That is, when ß is a Serre class of abelian

groups one obtains both theorems "mod ß". Later the work of Sullivan and others

on localizations showed that even if ß were not a Serre class the Hurewicz theorem

might still hold mod ß. Of course we have in mind here letting ß = G, the class of

all /-local abelian groups; though G¡ is not a Serre class a fundamental result [7, p.

18] of localization theory shows the validity of the Hurewicz theorem mod G,. In

this note we establish the relative version of this theorem-that is, we prove

[Theorem 3.1 below] a Whitehead theorem mod G,. We shall in fact work in the

more general setting of nilpotent spaces and groups. Our proof uses in a natural

way the technique of/»-completions.

We finish by giving a curious application of our result. In §4 we consider the

question raised by Milgram [6, p. 246] "what fibrations are also cofibrations?"

1. Algebraic preliminaries. By group we always mean nilpotent group although

we write the group operation additively. We first recall some terminology. Let G be

a group and p be a prime. Say that G is /»-divisible (resp. has no /»-torsion) (resp. is

uniquely /¿-divisible) if the function "multiplication by p"Xp : G -* G is onto (resp.

one-to-one) (resp. bijective). If / c P where P denotes the set of all primes then G

is said to be /-local if G is uniquely /¿-divisible for each p E P — I. By the

/¿-completion of G we always mean the ext /»-completion Ext(Zp», G) which we

write as Gp. See [1, Chapter VI] for facts about/»-completion. A group G is said to

be /»-complete if the completion homomorphism G —» Gp is bijective and if

Hom(Zp~, G) = 0 [1, p. 172, 3.1]. We point out that the condition Horn^», G) =

0 is redundant since by [1, p. 172, 3.2] Gp is /»-complete; hence Hom^», G) =:

HomiZ^oo, Gp) = 0.

We will make use of the following four lemmas, the first due to Bousfield and

Kan [1, p. 176, 3.6].

Lemma 1.1. A group G is p-divisible if and only if Gp = 0.
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Lemma 1.2. 7/v4—»Ti—»C—»7J>—»7i is an exact sequence of groups with imj a

normal subgroup of E and where A, B, D, and E are p-complete, then so is C

p-complete.

Proof. We outline a sketch only. One first establishes that the lemma holds for

short exact sequences, i.e., with A = E = 0. One can also show that whenever

k: G —» H is a homomorphism with normal image between two/»-complete groups

G and 77 then so are the groups ker k, im k, and coker k again /»-complete. The

lemma is then proved by taking the exact sequence in its statement and passing to

the associated short exact sequence 0 —» coker /—» C —» ker j —»0.

Lemma 1.3. A group G is uniquely p-divisible if and only if both Gp = 0 and

Hom(Zp~, G) = 0.

Proof. The implication ==> follows from Lemma 1.1. To prove the converse we

shall show that G is isomorphic to Hom(Z[l//»], G) which is always uniquely

/»-divisible. The exact sequence of abelian groups 0 -» Z -» Z[l//»] —» Zp„ —» 0 gives

rise to the exact sequence of groups

Hon^Z,«,, G)^Homízí-  ,Gj-^Hom(Z, G) ^ G.

By [1, p. 177, 3.7] the subgroup im(/*) is the kernel of the completion homomor-

phism G -» Gp; thus Gp = 0 implies /'* is onto. And Hom(Zp*,, G) = 0 implies i* is

one-to-one.

The final lemma will be used in computing obstructions:

Lemma 1.4. If A and G are abelian groups with G p-complete then

(a) Hom(,4, G) = 0 if A is p-divisible.

(b) E\t(A, G) = 0ifA has no p-torsion.

Proof, (a) Assume to the contrary that/: A —» G is a nontrivial homomorphism.

Since A is /»-divisible so is im/ again /»-divisible. We could then construct a

monomorphism g: Z[l//»]—»im/, and hence a nontrivial homomorphism from

Z[l//»] into G. But this contradicts the fact that Hom(Z[l//»], G) = 0 by [1, p.

174, 3.4].

(b) Ext(A, G) =a Ext(A, ExtiZ,«, G)) aa Ext(Tor(yi, Zp„), G) =a Ext(0, G) = 0.

(The second isomorphism from the left is a general identity [2, p. 116].)

2. Topological preliminaries. First we set up some terminology. By space we

always mean a nilpotent space of the homotopy type of a connected CW complex.

By the/»-completion of a space X we always mean the ext/»-completion space Xp in

the sense of Bousfield and Kan [1, Chapter VI]. We have the associated /»-comple-

tion map 8: X ^> Xp, and a space X is called /»-complete if S is a homotopy

equivalence. Recall that X is /»-complete if and only if all its homotopy groups are

/»-complete groups [1, p. 184, 5.4].

It is convenient to follow Hilton [3] in his use of the homology and homotopy

groups of a map /: X -» F. For example, if Mf and Ej denote the mapping cylinder
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and mapping track (respectively) of / then the groups Hn(f) at H„(Mf, X) and

itn(f) ot tt„(Y, Ej). In general itx(f) is not a group; however we will require in §3

that/induce a surjection of fundamental groups which insures that itx(f) = 0.

We shall need the following two results, the first being due to Bousfield and Kan

[1, P- 183].

Lemma 2.1. If X is a space then the following is a split short exact sequence of

groups:

0 ~»~ÏJxJp -» itn(Xp) - Ham(Z,., itn_x(X)) -0.

Proposition 2.2. Let g: X —» Y be a map of p-complete spaces. Then, for N > 2,

the groups Hr(g; Z/pZ) = Ofor all r < Af if and only if the groups Hr(g) = Ofor all

r <N.

Proof. <=Universal Coefficient Theorem for homology.

=> In preparation for this proof we present two lemmas:

Lemma 2.3. The implication => is true if in addition to the hypotheses above X and

Y are 1-connected.

Proof of Lemma 2.3. Assume by induction that for some «, 1 < n < N, the

lemma holds for r < n. Since X and Y are /»-complete so are their homotopy

groups. Then it„+x(g) is a/»-complete group by Lemma 1.2 so that by the inductive

hypothesis and the Relative Hurewicz Theorem for 1-connected spaces Hn+X(g) ^

itn+x(g) is a p-complete group. On the other hand since 77n + 1(g; Z/pZ) = 0 the

Universal Coefficient Theorem for homology gives that Hn+X(g) is a/»-divisible

group. But any/»-complete,/»-divisible group is trivial by Lemma 1.1; therefore

Hn+X(g) = 0 and the inductive step is complete.

In order to drop the 1-connectedness assumption we must prove the following

technical lemma.

Lemma 2.4. Let (a, ß) be a pair of maps a: X —» F, ß: X —*Z such that

Hr(a; Z/pZ) = Ofor all r < N, and Z is a p-complete space with itr(Z) = Ofor all

r > N. Then ß extends to a map y: Y —» Z so that y ° a = ß.

Proof of Lemma 2.4. We use obstruction theory. Since Z is nilpotent it has a

"long" Postnikov decomposition as a tower of principal fibrations q[: Z/ —» Z/_,.

Each qj is induced by a map Z/_, —» K(Ars, r + 1) where Ars is an abelian quotient

in any given central series for ttr(Z) under the nilpotent operation of itx(Z). All

obstructions to extending ß to y lie in groups of the form Hr+X(a; A¡).

The Universal Coefficient Theorem for cohomology gives Hr+X(a; Ars) =:

Ext(77r(a), A¡) © Hom(77r+1(a), Ars). By our hypotheses and the Universal Coeffi-

cient Theorem for homology the groups 77r(a) are /»-divisible for r < Af, and have

no /»-torsion for r < N. Also since Z is p-complete it can be shown that all Aj in

the upper central series are p-complete (abelian) groups (cf. [1, p. 174, 3.4(ii)] in the

case r = 1). We may therefore use Lemma 1.4 to conclude Hr+X(a; A¡) = 0 for all

r < N. And if r > Af then itr(Z) = 0 so that each A¡ = 0-i.e. Hr+X(a; A¡) = 0.

Hence all obstructions vanish and ß extends to y as claimed.
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Proof of Proposition 2.2. Let ßw: W7—» W["~xx denote the «-equivalence of a

space IF into its [n — l]-Postnikov section W[n~x\ If IF is p-complete so is W[n~xx.

We apply Lemma 2.4 to the pair (g, ßx) to obtain a map y: F—» XlN~xx so that

y ° g = ßx. It follows that 77r(y; Z/pZ) = 0 for r < N, and that y is surjective on

homotopy groups in all dimensions. Next reapply Lemma 2.4 to the pair (y, ßy) to

obtain a map h: X [N~XX-» YlN~x] with h » y = ßy. Then y is seen to be injective

on homotopy groups in dimensions r, r < N — 1; hence h is in fact a homotopy

equivalence. Note that at this point we could conclude that Hr(g) = 0 for all r < Af

which is almost our goal. To show 77^ g) = 0 we must work a bit harder.

To this end consider the ladder of nilpotent fibrations

Fx     -,     X     -*     *i*-'l

if ig ih

F      -»      Y     ->      y-["-i]

where Fx and FJ, are the fibres of ßx and ßy respectively and/is the induced map of

fibres. The methods of the Hilton-Roitberg generalization of the Spectral Sequence

Comparison Theorem to nilpotent fibrations [4] may be applied to study the

homology with Z/pZ coefficients of this ladder. We observe that the absolute

(trivial Serre class) version of Theorem 3.2 of [4, p. 440] is valid here in the case of

homology with Z/pZ coefficients. In particular since h is a homotopy equivalence

and 77r(g; Z/pZ) = 0 for r < N, we conclude that 77r(/; Z/pZ) = 0 for r < N.

Since Fx and Fy are again p-complete spaces by Lemma 1.2, and are at least

1-connected, we may apply Lemma 2.3 to get that Hr(f) = 0 for r < N. Finally,

again applying the Comparison Theorem, Hr(g) = 0 for r < N.    Q.E.D.

3. Proof of the main result. This is the mod p Whitehead theorem. Recall that all

spaces are nilpotent.

Theorem 3.1. Let f: X -^ Y be a map of spaces which induces a surjection of

fundamental groups. The following two conditions are equivalent for N > 2:

(1) Hr(f) is a p-divisible group for each r < N and has no p-torsion for each

r <N.

(2) ttr(f) is a p-divisible group for each r < N and has no p-torsion for each r < N.

Proof. Let F denote the fibre of /: X —* Y and note that F is connected and

nilpotent. Consider the ladder of fibrations [1, p. 187, 6.5(i)]

F      ->      X      L       Y

«il hi hi

fp - x,  7   yP

where 8¡ denotes the appropriate p-completion for 1 < / < 3. We now list a series

of equivalent statements. The parenthetical comment after each statement ; is to

justify the equivalence of statements /' and < — 1,
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1. Condition (1) of the theorem.

2. 77r(/; Z/pZ) = 0 for each r < N. [Universal Coefficient Theorem for homol-

ogy].

3. Hr(g; Z/pZ) = 0 for each r < N. [The maps 82 and ô3 always induce

isomorphisms on homology with Z/pZ coefficients [1, p. 186, 6.1]].

4. 77r(g) = 0 for each r < N. [Proposition 2.2].

5. ttr(g) — 0 for each r < N. [Relative Hurewicz Theorem for nilpotent spaces [4,

p. 441, Corollary 3.4]].

6. itr(Fp) = 0 for each r < N — I. [The group ttr(Fp) ^ nr+x(g)].

1. ttr(F)p = 0 for each r < Af - 1 and Hom^», itr(F)) = 0 for each r <N - 1.

[Lemma 2.1].

8. ttr(F) is p-divisible for each r < N — 1 and has no p-torsion for each

r < N — 1. [Lemmas 1.1 and 1.3].

9. Condition (2) of the theorem. [The group itr(F) ^ itr+,(/)].   Q.E.D.

We remark that if the spaces X and F of Theorem 3.1 are 1-connected of finite

type, then the theorem is known as a result of ß-theory. For in this case condition

(1) (resp. condition (2)) of the theorem is equivalent to the condition that the group

Hr(f) (resp. ttr(f)) is contained in the Serre class of torsion abelian groups having

no element with order a power of p for each r < N.

However one is also interested in this theorem for spaces not of finite type. For

we may then interpret 3.1 as a relative version of the localization theory result that

states that a space X has /-local homology groups if and only if X has /-local

homotopy groups [7, p. 18], [5, p. 72, Theorem 3B]. To see this fact letp G P - /

and set Y = * in 3.1.

4. Fibrations which are also cofibrations. Milgram [6. p. 246] pointed out the

"mysterious result" that the fibration K(Q/Z, n) -> K(Z, n + 1) -> K(Q, n + 1) is

also a cofibration. Theorem 3.1 leads to the following generalization of his example

(which is then recovered by taking X = K(Z, n + 1) and 1 = 0).

Theorem 4.1. Let j: X —» X¡ be the localization of a l-connected space X at a set

of primes I, and let i: F—» X denote inclusion of the (homotopy theoretic) fibre F of

the map j into X. Then the fibration F-+X —*X, is also a cof ibration.

Proof. Let p: X —> C denote the projection of X onto the cofibre C of the map

/': F —» X. Then there exists a map h: C —» X, to make the following a homotopy

commutative diagram:

F     —>      X      —*      C

|1 |1 ih

F     X     X     L     X,

We shall show, to prove the theorem, that the map A is a homotopy equivalence.
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To this end apply the localization functor to the diagram above to obtain

another homotopy commutative diagram:

i P
F->X-íí—"C\   .\/       ,v

I1
-*!

/

Pi

h

j     *

+c,

■*x, ■*x,

(4.2)

In this diagram j denotes the appropriate localization maps, and if /: X —» Y is a

map then/: X¡ —» Y¡ denotes the map induced by/upon localization.

We first study the map j: C -» C,. Since F-^X^X, is a fibration, itm(i) at

tt^(X,). But it^(X¡) is /-local and the map i induces a surjection of fundamental

groups; therefore by Theorem 3.1  the group H+(i) is again /-local. And since
1      p

F—>X -* C is a cofibration, H^(i) at Ht(C) so that C is an /-local space. Thus

j : C —» C is a homotopy equivalence.

We next establish that the map h¡: C, —* X¡ is a homotopy equivalence. In this

regard, recall that the localization functor preserves both fibrations and cofibra-
Ji Pi

tions so that F, -» X, —> X, is a fibration and F, -» X, -» C, is a cofibration. But

since j,: X,-, X, is easily seen to be a homotopy equivalence, the space F¡ = *.

Thus the map p¡:X,^,Cl is a homotopy equivalence. Then h¡: C¡^*X¡ is a

homotopy equivalence by considering diagram (4.2).

Again referring to diagram (4.2) we see that since j: C —, C¡, h¡: Q —» X„ and

j: X¡^tX¡ are homotopy equivalences, so is h: C^>X¡ also a homotopy equiva-

lence.
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