SHORTER NOTES

The purpose of this department is to publish very short papers of unusually elegant and polished character, for which there is no other outlet.

LINKS WITH FREE GROUPS ARE TRIVIAL

WILLIAM S. MASSEY AND LORENZO TRALDI

ABSTRACT. In this note we extend a well-known consequence of Dehn's Lemma to include tame links in the three-sphere.

Recall that a link in S^3 is a disjoint union of finitely many embedded circles (the *components* of the link). Two links are *equivalent* iff there is a homeomorphism of S^3 with itself which carries one onto the other, and a link is *tame* iff it is equivalent to a polygonal link. A link is *trivial* iff it is equivalent to a link lying in a plane in R^3 .

THEOREM. Let $L \subseteq S^3$ be a tame link whose group $G = \pi_1(S^3 - L)$ is free. Then L is a trivial link.

PROOF. Let μ be the number of components of L; note that G is free of rank μ , for its abelianization $H_1(S^3 - L; \mathbb{Z}) \cong H^1(L; \mathbb{Z})$ is free abelian of rank μ , by Alexander duality. If $\mu = 1$ we obtain the standard unknotting theorem for tame knots in $S^3[2, p. 103]$.

Proceeding inductively, suppose that $\mu > 1$. Then L must be a split union $L = L_1 \cup L_2$ of two nonempty sublinks L_1 and L_2 (i.e., $L = L_1 \cup L_2$ and there is an embedded 2-sphere $S \subseteq S^3 - L$ such that L_1 and L_2 are contained in different components of $S^3 - S$); for if not then $S^3 - L$ would be an Eilenberg-Mac Lane space K(G, 1) [1, p. 19], from which it would follow that $H_2(S^3 - L; \mathbb{Z}) \cong H_2(G) = 0$ ($H_2(G) = 0$ because G is free). By Alexander duality, though, $H_2(S^3 - L; \mathbb{Z}) \cong \tilde{H}^0(L; \mathbb{Z})$ is free abelian of rank $\mu - 1$.

(The fact that L is splittable can also be deduced directly from Theorem (27.1) of [1].)

Thus L is a split union $L = L_1 \cup L_2$, and hence $G \cong G_1 * G_2$, where $G_i = \pi_1(S^3 - L_i)$. In particular, G_1 and G_2 , being subgroups of the free group G, are themselves free. By inductive hypothesis, then, L_1 and L_2 are both trivial links, and hence so is their split union L. Q.E.D.

Received by the editors March 31, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 57M25, 57M35.

BIBLIOGRAPHY

- 1. C. D. Papakyriakopoulos, On Dehn's Lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1 26.
 - 2. D. Rolfsen, Knots and links, Publish or Perish, Berkeley, California, 1976.

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, NEW HAVEN, CONNECTICUT 06520 (Current address of W. S. Massey)

Current address (Lorenzo Traldi): Department of Mathematics, Lafayette College, Easton, Pennsylvania 18042