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TWO RESULTS ON FLXED RINGS

J.-L. PASCAUD

Abstract. Let R be a semiprime ring, G a finite group of automorphisms of R and

B the algebra of the group. (A) If R is left primitive and B is G-simple then the

fixed subring RG is left primitive. (B) If B is semiprime and RG is a left Goldie

ring, then R can be embedded in a free left Äc-module of finite rank. Conse-

quently if R a is left Noetherian, R is left Noetherian.

Our first result answers a question of J. Fisher and J. Osterburg in [3, Question

11]. The second one generalizes similar results of D. Farkas and R. Snider when R

has no |G|-torsion or when R has no nilpotent element [2] and S. Montgomery

when G is X-outer [7].

Let R be a semiprime ring, R<§ the ring of left quotients of R with respect to the

filter SF of all nonzero two-sided ideals and Q the left maximal ring of quotients of

R. Up to isomorphisms, we have R Q R9 ç Q. Let G be a finite group of

automorphisms of R : the action of G can be extended in a natural way to R9 and

we write sg for the image of s E R9 under g G G. For g E G, let í»g = {s G

R$; V r G R, rs = srg); there exists xg G R? such that <&? = Cxg [4, Lemma 6]

where C denotes the center of R$. So, on account of the relations ^/,^g Q 3*^ and

<S>g = $j^ft-t, the "algebra of the group" B(B; G) = 2gSG 3>g is a ring invariant by

the action of G (for more details, see [5], [6]). Subsequently we suppose that C is

Artinian; so B is semisimple Artinian. Bex, . . ., Ber (resp. Cex, .. . , Ces) denote the

simple components of B (resp. C). Considering e G {e„ . . . , er) and e G

{e„ . . . , es) such that ee = e and following [4, Lemma 3], the free product

Be *Ce Ce[X] contains an element n(X) = 27-1 a¡Xb¡ which commutes with all

elements of Be (and even with all elements of B); we can suppose that bx, . . ., bm

are C-independent and ax, . . . , am nonzero. He = { g G G; exg ^ 0} is a subgroup

of G and, for each g E H, eg = e, exg is invertible in eR and the action of g on eB

agrees with that of the inner automorphism defined by Exg [5, Lemmas 1, 2]. Let

re(X)=  2 (ti*)?*
k-\

where g, = 1, g2, . . . , gn are representatives of the right cosets of G modulo Hc. re

defines an BG-BG-bimodule homomorphism from B^to (R<§)G which satisfies:

(a) re(ex) = re(x),

(b)V/G^,Te(/)^0,
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(c) 3 Ie E 9, Te(Ie) CRG[5, pp. 215-216].
(A) In this paragraph, we suppose that R is a left primitive ring, V is a faithful

irreducible left B-module and that B is G-simple (i.e. B has no nontrivial G-in-

variant ideal). Then C is a field and we set t = Te .

Proposition 1. V is a finitely generated left RG-module.

Proof. bx is left independent of b2, . . ., bm, bf2, . . . , A*1, . . . , bf-, . . . , b*

relative to the sequence of automorphisms 1, . . ., 1, g2, . . ., g2, . . ., g„, . . . , g„

(i.e. bx G 2£_2 *ft*f + 2712 2*_, *a*/*■); so, by [5, Proposition 1'] there exist

elements vp tj E R such that a = 2,t^A,*, 9e 0 and 2, «/A,*/, = 0 for all g G

{ g2,. . ., g„} if / = 1 and all g G { g„ . . ., g„} if í # 1. This imphes

axxa = 2 axxvjbxtj   and    2 (a¡xvjfb?tj = 0

/ y

for all x G B, all g G { g2, . . . , g„) if / = 1 and all g G { g„ . . . , g„} if i * 1.

Summing these relations we obtain

V x E R        axxa = 2 r(xvj)tj- 0)
/

Now, by definition of R<g and by (c) there exists a G-invariant ideal J E 9 such

that Ja Ç B and that t(/ü,) ç B G for each/ Consider the set T of elements a G R

such that there exist a G-invariant ideal I E 9, mappings^: /-» BG and elements

(, G B which satisfy

V x E I       axxa = ^2fj(x)tj.
j

From the foregoing remarks, T is a nonzero two-sided ideal of B. Thus, since V is a

faithful irreducible left Ä-module, for 0 ¥= w E V we have V = Rw = Tw. There-

fore we can consider a0E T with w = a0w so that

x E I       axxw = a,;ca0H> = Zi.^Wy1*'-

7

Since F = /w, it follows that axV ç 2, BG(,w. By letting A G G act on relation (1)

and applying the previous method we obtain also axV Q 27 R tfw. Let W —

2gec 27 RGtfw; then the set A of elements a E R which satisfy

VAG G       fl'KÇH'

is a nonzero G-invariant sub-B. G-B-bimodule of R9 Its left annihila tor in B is a

G-invariant ideal; hence this annihilator is zero. But, by [5, Lemma 5], there exists

K E 9 such that K Q A ; this implies V = KV Q W.   \J

Proposition 2. B g is left primitive.

Proof. By Proposition 1, V contains a maximal left BG-module W. Let ?T = [a

E R; Vg E G, agV Q W); this is a sub-BG-B-bimodule of R9 which is G-

invariant. Suppose that 9 is nonzero. Its left annihilator in B (which is a G-

invariant ideal of B) is zero and [5, Lemma 5] there exists K E 9 such that
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K Q 9; hence V = KV ç W, a contradiction. Thus 9 is zero and Vf W is a

faithful irreducible left BG-module.    □

(B) In this part, we suppose that B is semiprime and RG is a left Goldie ring.

V. K. Kharchenko has proved that R is a left Goldie ring; the action of G can be

extended to Q and QG is the left maximal ring of quotients of RG [5, Theorem 9].

C is the center of Q and B(R; G) = B(Q; G) [1, Proposition 1]; since Q is

semisimple Artinian, C is Artinian. Theorem 10 of [5] shows that Q is a finitely

generated right (2c-m0£nile; there exist elements xx, . . ., x, of R such that Q =

2'*_, xkQG.

Proposition 3. B ca/i be embedded in a free ¡eft R G-module of finite rank.

Proof. Let / = fl ■_, /, G 9 and

/:/->(*G)"|G|,     a -* (rey(a%)),       1< j < r, I < k < t, g G G.

/ defines a left B G-module homomorphism. Since B is a semiprime Goldie ring, /

contains a regular element so that B can be embedded in /; hence it is sufficient to

prove that/is injective.

Let a be a nonzero element of /. Then A = 2gec °gR ■ a nonzero G-invariant

right ideal. Its left annihilator lB(A) in B is G-invariant; therefore lB(A) is a

two-sided ideal generated by a central idempotent e ¥= 1 of B and there exists

J E 9 such that (1 - e)J ç RGA [5, Lemma 5]. We choose ey such that ey(l - e)

= Cj. From re(x) = re(ejx), we obtain the following relations:

rej(RGA) D Te>((l - e)/) = T,(e/1 - e)/) = Tey(e>/) = rtj(J).

Thus re(/) and re(A) are nonzero. Moreover, since B is contained in the centralizer

of QG in £?, we have that re defines a öG-right module homomorphism from Q to

gG. Then, from re(AQ) = 2gec 2't_, tAagxk)QG being nonzero, there exist some

g E G and some A: such that re(agxk) is nonzero.   □

Remark. A (not necessarily finite) group of automorphisms of a semiprime ring

B is an "A/-group" if the algebra B of G is semiprime and finitely generated as a

C-module and if, in the set E of nonzero central idempotents of B, the set of

idempotents e such that He = { g G G; V e, G £, e, < e, e,í>¿ ^= 0} is a subgroup

of finite index in G, forms a cofinal system. In our hypothesis (B is semiprime and

C is Artinian) it means that for each j (1 < j < s) H is of finite index. All

Kharchenko's results used in our proofs are available for M-groups; so, the

foregoing results are more generally true for M -groups.
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