TWO RESULTS ON FIXED RINGS

J.-L. PASCAUD

Abstract

Let R be a semiprime ring, G a finite group of automorphisms of R and B the algebra of the group. (A) If R is left primitive and B is G-simple then the fixed subring R^{G} is left primitive. (B) If B is semiprime and R^{G} is a left Goldie ring, then R can be embedded in a free left R^{G}-module of finite rank. Consequently if $R^{\boldsymbol{G}}$ is left Noetherian, R is left Noetherian.

Our first result answers a question of J. Fisher and J. Osterburg in [3, Question 11]. The second one generalizes similar results of D. Farkas and R. Snider when R has no $|G|$-torsion or when R has no nilpotent element [2] and S. Montgomery when G is X-outer [7].

Let R be a semiprime ring, $R_{\mathscr{G}}$ the ring of left quotients of R with respect to the filter \mathscr{F} of all nonzero two-sided ideals and Q the left maximal ring of quotients of R. Up to isomorphisms, we have $R \subseteq R_{\mathscr{G}} \subseteq Q$. Let G be a finite group of automorphisms of R : the action of G can be extended in a natural way to R_{Φ} and we write s^{g} for the image of $s \in R_{\mathfrak{G}}$ under $g \in G$. For $g \in G$, let $\Phi_{g}=\{s \in$ $\left.R_{\mathscr{F}} ; \forall r \in R, r s=s r^{g}\right\}$; there exists $x_{g} \in R_{\mathscr{F}}$ such that $\Phi_{g}=C x_{g}$ [4, Lemma 6] where C denotes the center of $R_{\mathscr{F}}$ So, on account of the relations $\Phi_{h} \Phi_{g} \subseteq \Phi_{h g}$ and $\Phi_{g}^{h}=\Phi_{h g h^{-1}}$, the "algebra of the group" $B(R ; G)=\Sigma_{g \in G} \Phi_{g}$ is a ring invariant by the action of G (for more details, see [5], [6]). Subsequently we suppose that C is Artinian; so B is semisimple Artinian. $B e_{1}, \ldots, B e_{r}$ (resp. $C \varepsilon_{1}, \ldots, C \varepsilon_{s}$) denote the simple components of B (resp. C). Considering $e \in\left\{e_{1}, \ldots, e_{r}\right\}$ and $\varepsilon \in$ $\left\{\varepsilon_{1}, \ldots, \varepsilon_{s}\right\}$ such that $e \varepsilon=e$ and following [4, Lemma 3], the free product $B e * C_{e} C \varepsilon[X]$ contains an element $\mu(X)=\sum_{i=1}^{m} a_{i} X b_{i}$ which commutes with all elements of $B e$ (and even with all elements of B); we can suppose that b_{1}, \ldots, b_{m} are C-independent and a_{1}, \ldots, a_{m} nonzero. $H_{e}=\left\{g \in G ; \varepsilon x_{g} \neq 0\right\}$ is a subgroup of G and, for each $g \in H, \varepsilon^{g}=\varepsilon, \varepsilon x_{g}$ is invertible in εR and the action of g on εR agrees with that of the inner automorphism defined by εx_{g} [5, Lemmas 1, 2]. Let

$$
\tau_{e}(X)=\sum_{k=1}^{n}(\mu(X))^{g_{k}}
$$

where $g_{1}=1, g_{2}, \ldots, g_{n}$ are representatives of the right cosets of G modulo $H_{e} \cdot \tau_{e}$ defines an $R^{G}-R^{G}$-bimodule homomorphism from R_{Φ} to $\left(R_{\Phi}\right)^{G}$ which satisfies:
(a) $\tau_{e}(e x)=\tau_{e}(x)$,
(b) $\forall I \in \mathscr{F}, \tau_{e}(I) \neq 0$,

[^0](c) $\exists I_{e} \in \mathscr{F}, \tau_{e}\left(I_{e}\right) \subset R^{G}[5$, pp. 215-216].
(A) In this paragraph, we suppose that R is a left primitive ring, V is a faithful irreducible left R-module and that B is G-simple (i.e. B has no nontrivial G-invariant ideal). Then C is a field and we set $\tau=\tau_{e_{i}}$.

Proposition 1. V is a finitely generated left R^{G}-module.
Proof. b_{1} is left independent of $b_{2}, \ldots, b_{m}, b_{1}^{\delta_{2}}, \ldots, b_{m}^{g_{2}}, \ldots, b_{1}^{\ell_{1}}, \ldots, b_{m}^{\ell_{1}}$ relative to the sequence of automorphisms $1, \ldots, 1, g_{2}, \ldots, g_{2}, \ldots, g_{n}, \ldots, g_{n}$ (i.e. $\left.b_{1} \notin \sum_{k=2}^{n} \Phi_{\mathbf{g}_{k}} b_{1}^{\delta_{k}}+\sum_{i=2}^{m} \sum_{k=1}^{n} \Phi_{g_{k}} b_{i}^{\delta_{k}}\right)$; so, by [5, Proposition $\left.1^{\prime}\right]$ there exist elements $v_{j}, t_{j} \in R$ such that $\alpha=\Sigma_{j} v_{j} b_{1} t_{j} \neq 0$ and $\Sigma_{j} v_{j}^{8} b_{i}^{\delta_{j}} t_{j}=0$ for all $g \in$ $\left\{g_{2}, \ldots, g_{n}\right\}$ if $i=1$ and all $g \in\left\{g_{1}, \ldots, g_{n}\right\}$ if $i \neq 1$. This implies

$$
a_{1} x \alpha=\sum_{j} a_{1} x v_{j} b_{1} t_{j} \quad \text { and } \quad \sum_{j}\left(a_{i} x v_{j}\right)^{8} b_{i}^{8} t_{j}=0
$$

for all $x \in R$, all $g \in\left\{g_{2}, \ldots, g_{n}\right\}$ if $i=1$ and all $g \in\left\{g_{1}, \ldots, g_{n}\right\}$ if $i \neq 1$. Summing these relations we obtain

$$
\begin{equation*}
\forall x \in R \quad a_{1} x \alpha=\sum_{j} \tau\left(x v_{j}\right) t_{j} . \tag{1}
\end{equation*}
$$

Now, by definition of $R_{\mathscr{G}}$ and by (c) there exists a G-invariant ideal $J \in \mathscr{F}$ such that $J \alpha \subseteq R$ and that $\tau\left(J v_{j}\right) \subseteq R^{G}$ for each j. Consider the set T of elements $\alpha \in R$ such that there exist a G-invariant ideal $I \in \mathscr{F}$, mappings $f_{j}: I \rightarrow R^{G}$ and elements $t_{j} \in R$ which satisfy

$$
\forall x \in I \quad a_{1} x \alpha=\sum_{j} f_{j}(x) t_{j}
$$

From the foregoing remarks, T is a nonzero two-sided ideal of R. Thus, since V is a faithful irreducible left R-module, for $0 \neq w \in V$ we have $V=R w=T w$. Therefore we can consider $\alpha_{0} \in T$ with $w=\alpha_{0} w$ so that

$$
\forall x \in I \quad a_{1} x w=a_{1} x \alpha_{0} w=\sum_{j} f_{j}(x) t_{j} w
$$

Since $V=I w$, it follows that $a_{1} V \subseteq \Sigma_{j} R^{G_{t}} \boldsymbol{w}$. By letting $h \in G$ act on relation (1) and applying the previous method we obtain also $a_{1}^{h} V \subseteq \Sigma_{j} R^{G_{t}}{ }^{h} w$. Let $W=$ $\Sigma_{g \in G} \Sigma_{j} R^{G_{t} j_{w} w ; ~ t h e n ~ t h e ~ s e t ~} A$ of elements $a \in R$ which satisfy

$$
\forall h \in G \quad a^{h} V \subseteq W
$$

is a nonzero G-invariant sub- $\boldsymbol{R}^{\boldsymbol{G}}$ - R-bimodule of $\boldsymbol{R}_{\mathscr{F}}$ Its left annihilator in B is a G-invariant ideal; hence this annihilator is zero. But, by [5, Lemma 5], there exists $K \in \mathscr{F}$ such that $K \subseteq A$; this implies $V=K V \subseteq W$.

Proposition 2. R^{G} is left primitive.
Proof. By Proposition 1, V contains a maximal left R^{G}-module W. Let $\mathcal{T}=\{a$ $\left.\in R ; \forall g \in G, a^{g} V \subseteq W\right\}$; this is a sub- R^{G} - R-bimodule of $R_{\mathscr{G}}$ which is G invariant. Suppose that \mathscr{T} is nonzero. Its left annihilator in B (which is a G invariant ideal of B) is zero and [5 , Lemma 5] there exists $K \in \mathscr{F}$ such that
$K \subseteq \mathscr{J}$; hence $V=K V \subseteq W$, a contradiction. Thus \mathscr{J} is zero and V / W is a faithful irreducible left $\boldsymbol{R}^{G_{-}}$-module.
(B) In this part, we suppose that B is semiprime and R^{G} is a left Goldie ring. V. K. Kharchenko has proved that R is a left Goldie ring; the action of G can be extended to Q and Q^{G} is the left maximal ring of quotients of R^{G} [5, Theorem 9]. C is the center of Q and $B(R ; G)=B(Q ; G)$ [1, Proposition 1]; since Q is semisimple Artinian, C is Artinian. Theorem 10 of [5] shows that Q is a finitely generated right Q^{G}-module; there exist elements x_{1}, \ldots, x_{t} of R such that $Q=$ $\Sigma_{k=1}^{t} x_{k} Q^{G}$.

Proposition 3. R can be embedded in a free left \boldsymbol{R}^{G}-module of finite rank.

PROOF. Let $I=\cap_{j=1}^{r} I_{e_{j}} \in \mathscr{F}$ and

$$
f: I \rightarrow\left(R^{G}\right)^{r t|G|}, \quad a \rightarrow\left(\tau_{e}\left(a^{g} x_{k}\right)\right), \quad 1 \leqslant j \leqslant r, 1<k<t, g \in G
$$

f defines a left R^{G}-module homomorphism. Since R is a semiprime Goldie ring, I contains a regular element so that R can be embedded in I; hence it is sufficient to prove that f is injective.

Let a be a nonzero element of I. Then $A=\Sigma_{g \in G} a^{g} R$ is a nonzero G-invariant right ideal. Its left annihilator $l_{B}(A)$ in B is G-invariant; therefore $l_{B}(A)$ is a two-sided ideal generated by a central idempotent $e \neq 1$ of B and there exists $J \in \mathscr{F}$ such that $(1-e) J \subseteq R^{G} A[5$, Lemma 5$]$. We choose e_{j} such that $e_{j}(1-e)$ $=e_{j}$. From $\tau_{e_{j}}(x)=\tau_{e_{j}}\left(e_{j} x\right)$, we obtain the following relations:

$$
\tau_{e_{j}}\left(R^{G} A\right) \supseteq \tau_{e_{j}}((1-e) J)=\tau_{e_{j}}\left(e_{j}(1-e) J\right)=\tau_{e_{j}}\left(e_{j} J\right)=\tau_{e_{j}}(J)
$$

Thus $\tau_{e_{j}}(J)$ and $\tau_{e_{j}}(A)$ are nonzero. Moreover, since B is contained in the centralizer of Q^{G} in Q, we have that $\tau_{e_{j}}$ defines a Q^{G}-right module homomorphism from Q to Q^{G}. Then, from $\tau_{e_{j}}(A Q)=\Sigma_{g \in G} \Sigma_{k=1}^{t} \tau_{e_{j}}\left(a^{g} x_{k}\right) Q^{G}$ being nonzero, there exist some $g \in G$ and some k such that $\tau_{e_{j}}\left(a^{g} x_{k}\right)$ is nonzero.

Remark. A (not necessarily finite) group of automorphisms of a semiprime ring R is an " M-group" if the algebra B of G is semiprime and finitely generated as a C-module and if, in the set E of nonzero central idempotents of R, the set of idempotents e such that $H_{e}=\left\{g \in G ; \forall e_{1} \in E, e_{1} \leqslant e, e_{1} \Phi_{g} \neq 0\right\}$ is a subgroup of finite index in G, forms a cofinal system. In our hypothesis (B is semiprime and C is Artinian) it means that for each $j(1 \leqslant j \leqslant s) H_{g}$ is of finite index. All Kharchenko's results used in our proofs are available for M-groups; so, the foregoing results are more generally true for \boldsymbol{M}-groups.

References

[^1]3. J. Fisher and J. Osterburg, Finite actions on non commutative rings: a survey since 1970, (Proc. 3rd Oklahoma Conf., 1979), Ring Theory and Algebra III, Dekker, New York, 1980.
4. V. K. Kharchenko, Fixed elements under a finite group acting on a semi-prime ring, Algebra and Logic 14 (1976), 203-213.
5. \qquad , Galois theory of semi-prime rings, Algebra and Logic 16 (1978), 208-258.
6. S. Montgomery, Fixed rings of finite automorphism groups of associative rings, Lecture Notes in Math., vol. 818, Springer-Verlag, Berlin and New York.
7. \qquad , Outer automorphisms of semi-prime rings, J. London Math. Soc. 18 (1978), 209-221.

Département de Mathématiques, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Portiers, France

[^0]: Received by the editors May 16, 1980 and, in revised form, July 8, 1980.
 AMS (MOS) subject classifications (1970). Primary 16A20, 16A72, $16 A 74$.
 Key words and phrases. Finite group of automorphisms acting on a ring, primitive ring, semiprime Goldie ring.

[^1]: 1. M. Cohen and S. Montgomery, The normal closure of a semi-prime ring, (Proc. 1978 Antwerp Conf.), Ring Theory, Dekker, New York, 1979, pp. 43-59.
 2. D. Farkas and R. Snider, Noetherian fixed rings, Pacific J. Math. 69 (1977), 347-353.
