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DENSITY RELATIVE TO A TORSION THEORY

PAUL BLAND AND STEPHEN RILEY

Abstract. If (9", 5) is a torsion theory on Mod R, then a ring B of biendomor-

phisms of a 5-cocritical module is topologized. Moreover, if a certain factor

module of R is quasi-projective, a ring monomorphism <p: R —* B is found such

that <p(/?) is topologically dense in B. This is done in such a way that when (9", 5)

is the torsion theory in which every module is torsion free, the Jacobson density

theorem is recovered.

Throughout this paper, R will denote an associative ring with identity and

Mod R will stand for the category of unital right Ä-modules. Unless stated

otherwise, all mappings will be morphisms in a module category and morphisms

will be written on the side of the argument opposite that of scalars.

In [1], Dickson defined a torsion theory on Mod R to be a pair (?T, 'S) of classes

of right Ä-modules such that:

(a)ïnf = o.
(b) If M -> N -► 0 is exact and M £ 3", then iV G Î.

(c) If 0 -» M -» N is exact and N e ^, then M E f.

(d) For each module M, there is an exact sequence 0-»L-»M-»/V-»0 where

L G ?T and JV 6 f. Modules in 9" are called torsion and those in S torsion free.

If Ç5, "¿F) is a torsion theory on Mod R, then 9" is closed under isomorphic

images, factors, extensions, and direct sums while <5 is closed under isomorphic

images, submodules, extensions, and direct products [1, Theorem 2.3]. By saying

that a class Q of modules is closed under extensions we mean that if N is a

submodule of M such that N and M/N are in Q, then M is in Q. (?F, 5) will now

denote a fixed but arbitrary torsion theory on Mod R. The interested reader can

consult [2], [5] or [7] for a more extensive development of torsion theories.

A submodule TV of M will be called pure in M if M/N is torsion free and

following Golan [2, p. 181] we call a nonzero module M ?T-cocritical if M is torsion

free and every proper homomorphic image of M is torsion. A right ideal K of R is

called ?T-critical if R/K is a ?T-cocritical right Ä-module. It is not difficult to show

that K is a ÍT-critical right ideal of R if and only if K is maximal among the pure

right ideals of R. Thus, when (?T, ÍF) is the torsion theory in which every module is

torsion free, the 9"-critical right ideals of R are just the maximal right ideals of R

and the ?T-cocritical modules are just the simple right Ä-modules. Hence, the
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?T-critical right ideals of R and the ?T-cocritical right Ä-modules are in some sense

"generalized maximal" right ideals of R and "generalized simple" right Ä-modules

respectively. Since the endomorphism ring of a ^-cocritical module M is a

(noncommutative) integral domain [2, Proposition 18.2], M is, in the sense de-

scribed above, a "generalized left vector space" over the endomorphism ring of M.

Consequently, one is led to consider the questions: Can one topologize a ring B of

biendomorphisms of a ï-cocritical module M and find a ring monomorphism <p:

R —> B such that <p(R) is topologically dense in B1 Moreover, can this be done in

such a fashion that when Ço, W) is the torsion theory in which every module is

torsion free, the Jacobson density theorem is recovered? The purpose of this paper

is to answer these questions in the affirmative subject to a certain factor module of

R being quasi-projective as a right Ä-module.

An ideal / of R is right "ÜT-primitive if it is the largest ideal contained in some

?T-critical right ideal of R, while R will be called right ÍF-primitive if (0) is a right

^-primitive ideal of R. It now follows that / is a right ÎT-primitive ideal of R if and

only if / = (K : R)1 for some ?T-critical right ideal K of R. An easy adaptation of

the proof of [6, p. 52, Proposition 2] yields the following

Proposition 1. R is right 9 -primitive if and only if R admits a faithful, cyclic,

'ÏÏ-cocritical right R-module.

It is now immediate that if R is right ^-primitive, then R is torsion free. This

follows since if M is a faithful, cyclic, ?T-cocritical module, then the mapping

R -* LTxeA/ Mx: r —> (xr) is an R-hneax embedding where Mx = M for each x G

M.

Now suppose that R is a right 5"-primitive ring and that (0) is the largest ideal

contained in the 9"-critical right ideal K of R. Let M be a maximal right ideal of R

which contains K and set R* = R/K, E = End(ÄjJ), M* = M/K and B = {g G

End(£R*)\M*g C A/*}. Since M*r Q M* for each r G R, the canonical ring

homomorphism <p: R—*B: r —>rr where rr: R* —» R*: x —> xr does indeed have

codomain B and it is an embedding since R* is faithful. We now assume that R is

right *5 -primitive and that K, M*, R*, and B are as above.

In order to topologize B, for any / G B and x G R*, let 0(x, xf) be the set

{g G B\xg — xf G M*}. As x varies throughout R*, the collection of all such

0(x, xf) forms a subbase for a neighborhood system of /. We call the resulting

topology the M*-topology on B. Notice that since (M : R) » f\gÄ. 0(x, 0), R is

right primitive if and only if the M*-topology on B is Hausdorff. Using an

argument similar to that in the proof of [3, p. 29, Proposition 3] one can prove

Proposition 2. B is a topological ring when endowed with the M*-topology.

A set {x,, x2, ■ ■ ■ , xn}„ of distinct elements of R* is said to be M*-independent

if xj n,_1; m (M* : *,) $ M* ioxj = 1, 2, . . ., n.

'If A and B are nonempty subsets of a module M, then (A : B) " {r e R\Br Q A}. If B = {x}, we

write (A : x) for {A : {*}).
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Lemma 3. The set {jc„ x2, . . ., x„) of elements of R* is M*-independent if and

only if {xi + M*, x2 + M*, . . . , xn + M*} is a linearly independent set of vectors

in the left End(R*/M*)-vector space R*/M*.

Proof. Let A = End(R* / M*) and if S is a nonempty subset of R*/A/*, set

Sr = {r G R\Sr = 0} and Srt = {x G R*/M*\xSr = 0). Now suppose that the

set {jc„ x2, . . . , xn) is M*-independent and that the vectors jc, + M*, x2 +

M*, . . . , x„ + M* are A-linearly dependent. Let 27_, £,(*, + A/*) = 0 in R*/M*

and suppose that kj-, ¥= 0; then 0 ¥= kfa + M*) G 2?_1; ,w A(x¡ + M*). Hence, it

follows that

(Xj + M*y*[kj(xj + M*)Y?

r
n

2 A(*, + M*)
i*j

= n [a(x(. + M*)\ = n {x, + M*y.
i-i <-i

Thus, (x, + M*) n,n_I; ,w (*, + M*)r = 0 in Ä*/A/* and so

Xj R   (M*:x,)çM*,
.-i

a contradiction.

Conversely, if the vectors jc, + AÍ*, x2 + M*, . . ., xn + M* are A-linearly inde-

pendent and there is ay, 1 < j < n, such that Xj D/L,.,^ (A/* : jc,) Q A/*, then

(jc,. + A/*) n".|.w (*, + A/*X = 0 in R*/M*. Hence [A(;c,. + M*)Y 2
[2"_1; ,w A(x,. + M*)Y which implies that

[A(*. + A/*)]" Q

irl

S  A(x,. + A/*)

L ¡+j

But R*/M* is simple and so, by [4, Corollary 2.2], [A(jc, + A/*)]r/ = A(jc, + M*)

and [2?.1;W A(x,. + A/*)]" = 2?.I;W A(x,. + A/*). Thus, A(xy + M») Ç

27.1; ,w A(*< + M*>> contradicting the fact that {x, + A/*, x2 + M*, . . ., xn +

A/*} is a A-linearly independent set of vectors.

Lemma 4. If R* is quasi-projective as a right R-module, then every g G B gives

rise to a biendomorphism g*: R*/M* -> R*/M*: x + M* -> xg + M* ofR*/M*.

Proof. If A: G End(R*/M*), then k lifts to k' G End(ÄjJ) by the quasi-projectiv-

ity of R*. Hence for any x + M* G R*/M*,

[k(x + M*)]g*=[k'x + M*]g*

= (k'x)g + M* = k'(xg) + M* = K[(x + M*)g*].
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Lemma 5. Let S be a nonempty subset of R* — M*. If the relation — is defined on

S by x ~ y if there is a k G End(Ä*/M*) such that x + M* = k(y + A/*), then:

(a) — is an equivalence relation on S.

(b) If {jc„ jc2, . . ., jc„} Ç. S is an M*-independent set of elements of R*, then the

equivalence classes determined by jc, and Xp i ¥=j, are distinct.

(c) If R* is quasi-projective as a right R-module and jc, v G S are such that x ~y,

then 0(x, xf) = 0(y,yf)for any f G B.

Proof. Since (a) is obvious, suppose jc, and jc,, i ¥=j, determine the same

equivalence class. Then jc, ~ jc, and so let k G End(R*/M*) be such that jc, + M*

= k(xj + A/*). From this it follows that the set {*, + A/*, x2 + M*, . . ., xn +

A/*} is linearly dependent. Thus, by Lemma 3, the set {jc,, x-» . . . , xn) cannot be

M*-independent and so (b). To show (c), let g G 0(x, xf). Then xg — xf G M*

and so jc(g — f) + M* = 0 in R*/M*. But, by Lemma 4, g — f E B gives rise to

a biendomorphism (g — /)* of R*/'M* such that (x + M*)(g — /)* = 0. Now if

k G End(Ä*/A/*) is such that A:(jc + A/*) = y + A/*, then k(x + A/*)(g - f)* =

0 and so (y + M*)(g — /)* = 0. Hence y( g — f) + M* = 0 and therefore yg — yf

G M*. Thus g G 0(y,yf). Similarly any g G 0(y, yf) is in 0(jc,  xf).

Lemma 6. If R* is quasi-projective as a right R-module, then for any f G B the

collection of sets D"_i 0(x¡, xf), where {jc,, x2, . . . , xn} is an M*-independent set

of elements of R*, forms a base in the M*-topology for the neighborhood system off.

Proof. To prove the lemma, it is sufficient to show that if D il i 0(y¡, yf) is a

base element of the neighborhood system of / in the A/*-topology, there is an

A/*-independent set {jc,, x2, . . . , x„) of elements of R* such that D"_, 0(x¡, xf)

C r>,-i 0(y„yf).
First, let y G R* and / G B. We claim there is an M*-independent set

{jc,, jc2, . . ., jc„} of elements of R* such that H"_, 0(x¡, xf) C 0(y,yf). Notice

that if v G M*, then 0(y,yf) = B and so if jc G R* - A/*, then 0(jc, xf) C

0(y,yf). Now assume y £ M* and set A = End(R*/M*). If % is a basis for the

left A-vector space R*/M*, let v + M* = 2"_, ki{zi + A/*) where the z¡ + M* G

® are distinct and 0 ¥= k,■ E A for / = 1, 2, . . . , n. If jc, + M* = kfa + M*) for

each i, then the set of vectors {jc, + A/*, x2 + A/*, . . . , jc„ + A/*} is clearly

A-linearly independent. Hence, by Lemma 3, {jc,, jc2, . . . , jc„} is an M*-indepen-

dent set of elements of R*. But then y — 2"=, jc, G Af* and from this it follows

that n?_, 0(x,, xf) ç 0(y, yf).
Next, suppose that n T-1 0(y¡, yf) is a base element of the neighborhood system

of/where we assume, without loss of generality, that v, £ M* for i = 1, 2.m.

By our observations above, we see that, for each /, 1 < i < m, there is an

A/*-independent set {jc,,, jc,2, . . . , xin¡} of elements of R* such that

DyL i 0(jc&., jc(>/) C Oíj',-, v/) where, for each i and j, xy + M* is a left scalar

multiple of an element of % . Hence

m "i m

n n o(XiJ, XiJf) Q n o(yi,yj).
1=1     7=1 /=1
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Now let {z, + A/*, z2 + M*, . . . , zn + A/*} be the set of distinct elements of 9>

such that for each x¡j + M* there are aO^fcj G A and az, + A/*, 1 < s < n, such

that Xy + M* = ks{zs + A/*). Clearly such a set must exist in view of how the

jCy + M* are chosen. Now let S = {jc&-}?-i U,1, {zv z2, . . ., zn) and define the

relation ~ on S as in Lemma 5. If S denotes the equivalence classes of S

determined by —, then Lemma 5(b) shows that Card(S) = n. If {jc,, jc2, . . . , xn)

is a complete set of representatives of the equivalence classes in S, then, by

Lemma 5(c), n?_, 0(x¡, xf) = n,1, fl/Li 0(xy, Xijf). But, by Lemma 3, the set

{jc„ jc2, . . ., jc„} is M*-independent and so the proof is complete.

We are now in a position to prove the main result of this paper.

Proposition 7. Let R be a right S-primitive ring and suppose that <p: /? —» B:

r-*rr is the canonical embedding where B is endowed with the M*-topology. If

{jc,, jc2, . . ., jc„} is an M*-independent set of elements of /?*, then for any f E B,

there is an r G R such that rr E D"_, 0(jc,, xf). Moreover, if R* is quasi-projective

as a right R-module, then <p(R) is topologically dense in B.

Proof. Let/ G B and suppose that {jc,, jc2, . . ., jc„} is an M*-independent set

of elements of R*. Then, jc, 0,1, (A/* : jc,) (J M* for y = 1, 2, . . . , n and so since

M* is maximal in R*, M* + [x, D,"_,. w (M* : *,)] = R* for each/ 1 < j < n. If,

for each / m¿ + Xjtj = xf where /m, G M* and /, G n?_,.lW (A/* : jc,.), then

Xjtj - xf G M* ioTj = 1, 2, . . . , n. Now let r = S"_, /„ then '

n

jc,Tr — xf = jc,7, — xf + 2 xilj e A/*   for / = l,2,...,/i.
y-1

Hence rr E fl/L, <?(*,, x¿/). Now suppose that R* is quasi-projective and let N be

a neighborhood of/ By Lemma 6, there is an A/*-independent set {jc,, jc2, . . . , x„)

of elements of R* such that n,"_, 0(x,., xf) ç N. But, by the first part of this

proposition, there is an r E R such that rr E ("!,"_, 0(x¡, xf). Hence rr G <p(R) D

A^ and so <p(R) is topologically dense in B.

As a point of interest notice that when (?T, S) is the torsion theory in which

every module is torsion free, K is a maximal right ideal of R and so M* = 0. Hence

R* is a simple right Ä-module, B is the full biendomorphism ring of R* and the

0-topology on B is just the finite topology on B. Consequently, in this setting

Proposition 7 yields the usual topological version of the density theorem for right

primitive rings [3, p. 31]. To see that it also yields the algebraic version [3, p. 28], let

Vj,72, ■ • ■ ,y„ and x„ jc2, . . . , x„ be elements of R* and suppose that the x¡ are

End(.R*)-linearly independent. If % is a basis for JR* such that {x„ x2, . . ., x„) Q

%, define /: S —> R* to be such that xf = y, for / = 1,2,..., n. If / is extended

linearly to R*, then the O-independence of the set {jc„ jc2, . . ., xn) implies there is

an r G R such that rr E n,"=1 0(jc,-, xf). Hence x¡r = x¡Tr = xj *= y, for i =

1,2, ... ,n.
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