THE FRÉCHET SPACE ω ADMITS A STRICTLY STRONGER SEPARABLE AND QUASICOMPLETE LOCALLY CONVEX TOPOLOGY

SUSANNE DIEROLF

Let $\mathfrak Q$ denote the class of all locally convex Hausdorff spaces $(E,\mathfrak T)$ with the following property: Every locally convex Hausdorff topology $\mathfrak S\subset\mathfrak T$ on E has the same subfamily summable sequences as $\mathfrak T$. Several articles have been devoted to the investigation of the richness of $\mathfrak Q$, e.g., Kalton [4], Labuda [6], [7], Graves [3]; see also the references in [3]. For example, $\mathfrak Q$ contains every fully complete locally convex space which does not contain 1^∞ [6, p. 219, (8)], hence every separable Fréchet space. E. Thomas asked in a letter of 1976 whether $\mathfrak Q$ even contains every separable quasicomplete space. This note provides a negative answer to this question.

We will use the following results about separability which we prove for general topological vector spaces.

LEMMA. Every finite codimensional linear subspace H in a separable topological vector space E is separable.

PROOF. We may at once assume that $H = \ker f$, where f is a discontinuous linear form on E.

E contains a dense linear subspace L of countable dimension. For every $x \in E$ let L_x denote the linear span of $L \cup \{x\}$. We denote the topology of E by \mathfrak{T} . The strongest linear topology \mathfrak{S} on E such that for every $x \in E$, the relative topologies $\mathfrak{S}|L_x$ and $\mathfrak{T}|L_x$ coincide, is clearly stronger than \mathfrak{T} . Moreover $\mathfrak{S}|L=\mathfrak{T}|L$ and L is dense in (E,\mathfrak{S}) , hence $\mathfrak{T}=\mathfrak{S}$ by [2, p. 349, Lemma 1]. Since f is discontinuous we deduce that for some $z \in E$ the restriction $f|L_z$ is discontinuous, whence $H \cap L_z$ is dense in L_z . Thus $H \cap L_z$ is dense in E and hence dense in E. Since E is of countable dimension, we have proved that E is separable. \Box

(For a locally convex space E, a somewhat technical proof of the lemma has been given by Valdivia in [8, p. 195, Lemma 2].)

PROPOSITION. Let (E, \mathfrak{T}) be a separable topological vector space over $K \in \{R, C\}$ and let $(f_n)_{n \in \mathbb{N}}$ be a sequence of linear forms on E. Then the initial topology \mathfrak{T} on E with respect to the identity map $\mathrm{id} \colon E \to (E, \mathfrak{T})$ and all the functionals $f_n \colon E \to K$ $(n \in \mathbb{N})$ is again separable.

Received by the editors September 29, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46A35, 46A05.

Key words and phrases. Separable topological vector spaces, subseries convergent series, Orlicz-Pettis property.

^{© 1981} American Mathematical Society 0002-9939/81/0000-0380/\$01.50

PROOF. For every $n \in \mathbb{N}$, the space E provided with the initial topology \mathcal{F}_n with respect to id: $E \to (E, \mathcal{Z})$ and $f_i : E \to \mathbb{K}$ ($1 \le i \le n$), is the topological direct sum of $(\bigcap_{1 \le i \le n} \ker f_i, \mathcal{Z} | \bigcap_{1 \le i \le n} \ker f_i)$ and a finite dimensional linear subspace, hence separable according to the lemma. Since $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ $(n \in \mathbb{N})$ and \mathcal{F} equals the supremum $\bigvee_{n \in \mathbb{N}} \mathcal{F}_n$, we obtain the separability of (E, \mathcal{F}) . \square

The separable Fréchet space $\omega := \mathbb{K}^{\mathbb{N}}$ provided with the product topology \mathfrak{P} , clearly carries the initial topology with respect to the sequence of linear forms p_n : $\omega \to \mathbb{K}$, $(x_m)_{m \in \mathbb{N}} \mapsto x_n$, $(n \in \mathbb{N})$. Thus we get the following:

COROLLARY. For every separable linear topology $\mathfrak T$ on ω the supremum $\mathfrak T \bigvee \mathfrak P$ is again separable.

REMARK. We mention that the supremum of two separable linear topologies need not be separable. In fact, let (E, \mathfrak{T}) be a separable locally convex space containing a nonseparable linear subspace L. Choose a linear subspace $M \subset E$ such that $L \cap M = \{0\}$ and L + M = E. Then the initial topology \mathfrak{S} on E with respect to $f: E \to (E, \mathfrak{T}), \ j(x+y) \coloneqq x-y \ (x \in L, y \in M)$ is also separable. One verifies without difficulty that $(E, \mathfrak{T} \vee \mathfrak{S})$ is the topologically direct sum of $(L, \mathfrak{T}|L)$ and $(M, \mathfrak{T}|M)$, hence not separable.

EXAMPLE. We consider the noncomplete separable Montel space X constructed by Amemyia, Kōmura [1] (cf. also Knowles, Cook [5]), whose dimension is not less than the dimension of ω and in which every bounded subset has a finite dimensional linear span (see [1], [5]). Consequently there exists an injective linear map f: $\omega \to X$ with separable range. Let $\mathfrak X$ denote the initial topology on ω with respect to f: $\omega \to X$, which is clearly locally convex.

On account of the corollary, $(\omega, \mathfrak{T} \vee \mathfrak{P})$ is separable. Moreover, every bounded set in $(\omega, \mathfrak{T} \vee \mathfrak{P})$ has finite dimensional linear span, whence in particular, $(\omega, \mathfrak{T} \vee \mathfrak{P})$ is quasicomplete.

Finally, the sequence $(e_n)_{n\in\mathbb{N}}$ of unit vectors $e_n = (\delta_{nm})_{m\in\mathbb{N}} \in \omega$ is subfamily summable in (ω, \mathfrak{P}) , but not bounded, hence not summable, in $(\omega, \mathfrak{T} \vee \mathfrak{P})$. Thus $(\omega, \mathfrak{T} \vee \mathfrak{P}) \notin \mathfrak{L}$.

REFERENCES

- 1. I. Amemyia and Y. Kōmura, Über nicht vollständige Montelräume, Math. Ann. 177 (1968), 273-277.
- 2. S. Dierolf and U. Schwanengel, Examples of locally compact non-compact minimal topological groups, Pacific J. Math. 82 (1979), 349-355.
- 3. W. H. Graves, Universal Lusin measurability and subfamily summable families in abelian topological groups, Proc. Amer. Math. Soc. 73 (1979), 45-50.
- 4. N. J. Kalton, Subseries convergence in topological groups and vector spaces, Israel J. Math. 10 (1971), 402-412.
- 5. R. J. Knowles and T. A. Cook, *Incomplete reflexive spaces without Schauder bases*, Proc. Cambridge Philos. Soc. 74 (1973), 83-86.
- 6. I. Labuda, A note on exhaustive measures, Ann. Soc. Math. Polon. Ser. I Comment Math. Prace Mat. 18 (1975), 217-221.
 - 7. _____, Universal measurability and summable families in tvs, Indag. Math. 41 (1979), 27-34.
- 8. M. Valdivia, On quasi-completeness and sequential completeness in locally convex spaces, J. Reine Angew. Math. 276 (1975), 190-199.

MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN, D-8000 MÜNCHEN 2, WEST GERMANY