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THE FRECHET SPACE w
ADMITS A STRICTLY STRONGER SEPARABLE
AND QUASICOMPLETE LOCALLY CONVEX TOPOLOGY

SUSANNE DIEROLF

Let Q denote the class of all locally convex Hausdorff spaces (E, T) with the
following property: Every locally convex Hausdorff topology & C ¥ on E has the
same subfamily summable sequences as L. Several articles have been devoted to
the investigation of the richness of &, e.g., Kalton [4], Labuda [6], [7], Graves [3];
see also the references in [3]. For example, & contains every fully complete locally
convex space which does not contain 1*° [6, p. 219, (8)], hence every separable
Fréchet space. E. Thomas asked in a letter of 1976 whether { even contains every
separable quasicomplete space. This note provides a negative answer to this
question.

We will use the following results about separability which we prove for general
topological vector spaces.

LEMMA. Every finite codimensional linear subspace H in a separable topological
vector space E is separable.

PrROOF. We may at once assume that H = ker f, where f is a discontinuous linear
form on E.

E contains a dense linear subspace L of countable dimension. For every x € E
let L, denote the linear span of L U {x}. We denote the topology of E by ¥. The
strongest linear topology & on E such that for every x € E, the relative topologies
©|L, and Z|L, coincide, is clearly stronger than . Moreover &|L = T|L and L is
dense in (E, ), hence T = & by [2, p. 349, Lemma 1]. Since f is discontinuous we
deduce that for some z € E the restriction f|L, is discontinuous, whence H N L, is
dense in L,. Thus H N L, is dense in E and hence dense in H. Since H N L, is of
countable dimension, we have proved that H is separable. []

(For a locally convex space E, a somewhat technical proof of the lemma has
been given by Valdivia in [8, p. 195, Lemma 2}.)

PROPOSITION. Let (E, &) be a separable topological vector space over K € {R, C}
and let (f,),cn be a sequence of linear forms on E. Then the initial topology % on E
with respect to the identity map id: E — (E, T) and all the functionals f,: E —K
(n € N) is again separable.
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ProoFr. For every n € N, the space E provided with the initial topology %, with
respect to id: E — (E, ) and f;: E > K (1 < i < n), is the topological direct sum of
(N <icn ket f, gl N 1<i<n Ker f)) and a finite dimensional linear subspace, hence
separable according to the lemma. Since %, C %,,, (n € N) and ¥ equals the
supremum \/, .\%,, we obtain the separability of (E, ¥). O

The separable Fréchet space w := KN provided with the product topology B,
clearly carries the initial topology with respect to the sequence of linear forms p,:
w—>K, (x,)en > X, (n € N). Thus we get the following:

COROLLARY. For every separable linear topology ¥ on w the supremum T \/ B is
again separable.

REMARK. We mention that the supremum of two separable linear topologies need
not be separable. In fact, let (E, T) be a separable locally convex space containing
a nonseparable linear subspace L. Choose a linear subspace M C E such that
LN M= {0}and L + M = E. Then the initial topology & on E with respect to j:
E->(E X)), j(x+y)=x—y (x EL,y € M) is also separable. One verifies
without difficulty that (E, T \/ ©) is the topologically direct sum of (L, Z|L) and
(M, | M), hence not separable.

ExaMPLE. We consider the noncomplete separable Montel space X constructed
by Amemyia, Komura [1] (cf. also Knowles, Cook [5]), whose dimension is not less
than the dimension of w and in which every bounded subset has a finite dimen-
sional linear span (see [1], [5]). Consequently there exists an injective linear map f:
w — X with separable range. Let T denote the initial topology on w with respect to
f: w — X, which is clearly locally convex.

On account of the corollary, (w, T \/ ) is separable. Moreover, every bounded
set in (w, T \/ P) has finite dimensional linear span, whence in particular, (w, T \/
B) is quasicomplete.

Finally, the sequence (e,),cn Of unit vectors e, = (6,,),en € @ is subfamily
summable in (w, B), but not bounded, hence not summable, in (w, T \/ PB). Thus
(w, TV P) & L.
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