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SIDON SETS WITH EXTREMAL SIDON CONSTANTS

COLIN C. GRAHAM AND L. THOMAS RAMSEY1

Abstract. A finitely supported measure p on an l.c.a. group is said to be extremal

if Il ¿IL = llfll'^2 = (# SUPPM)'^2- W M is aa extremal measure and E is the
support of p, it follows that the Sidon constant of E is (# E)'/2, in which case E is

also said to be extremal. Our results are these. (1) An "independent" union of m

cosets of a finite subgroup H of G is extremal if and only if (essentially) m divides

#H. (2) Not all extremal subsets of abelian groups have the form described in (1).

(3) For any group (abelian or not), the Sidon constant of that group is at least

(.sx#Gy/".

1. Introduction. We use the notations, notions, results, and prerequisites of [GM].

For finite sets E we use #(E) for the cardinality of E. If G is an Lea. group and /x

is a finitely-supported measure on G, we say ft is extremal if || p'\\x = || /t|l'/2 =

#(supp n)x/2. Note that if E is the support of an extremal measure ¡i, then the

Sidon constant of E is (#E)X/2. In that case we also say that E is extremal. If G is

a finite abelian group, then the Sidon constant, a(G), is (#G)1//2; that is, G is

extremal [GM, p. 336]. In this paper we provide an answer to the question of

whether a(E) = #(£)1/'2 characterizes cosets of finite groups. That question is

asked in [GM, p. 405]. The answer is "no", as we show by a general result

(Theorem 2.1) and by several special examples (§3). The examples suggest that

identification of all extremal sets may be difficult. In §4 we show by elementary

means that the Sidon constant of any group (abelian or not) is at least
(.8)(#G)1/13.

We conclude this first section with a lemma. It is well known but we are unable

to provide a reference for it.

1.1. Lemma. Let /t be an extremal measure. Then (i) \fi~\ is a constant and (ii)

| /i({x})| = 1 for all x in the support of ¡l.

Proof of 1.1. Since ¡i is a discrete measure on a finite set E, we may assume that

G is discrete and G~ is compact. We may then write

IIm1J#¿01/2 = IMI = El/*({*})!

< {2lM(W)|2}1/2(#F)1/2= (/^f),/W)V*.
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Thus ll/t'lL < ll/t'lb- Therefore |u"| is constantly ||/i*||<»- ^ae aDOve chain of

inequalities also gives

?,\v{x}\ = {?,\n({x})\2)l/\#E)x/2 = #E.

Thus | /x{jc}| = Xe(x) f°r each x G G. That gives (ii).

2. The independent unions of cosets. Our main result is this.

2.1. Theorem. Let G be a finite subgroup of the discrete abelian group H. Let

m > 1 and x„ . . . , xm G 77 be such that S™ njXj El G if and only if nxxx = • • • =

nmxm = 0. Then the following hold.

(i) If m divides # G, then {x„ . .., xm) + G is extremal.

(ii) If m is even, m/2 divides # G and all the xy. have order two, then {xx, . . ., xm)

+ G is extremal.

(iii) If not all Xj have order two and {xx, . . ., xm) + G is extremal, then m divides

#G

Proof, (i) Suppose that m divides # G. Let G, be a subgroup of G of order m.

Let ju be a measure on G such that

(2.1) ,i*mGi = iL,    W-#G   and   || ̂ L = (m • #G)1/2.

Such a measure can be constructed as follows. Let w be a measure on G/Gx such

that ||w|| = #G/m and H^IL = (#G/m)x/2 [GM P- 336]. Then, for>> G G, let
H({y}) = w( v + G,). Verification of (2.1) is a routine matter.

Using ¡i we now define p on (x,, . . ., xm] + G as follows.

Let y,,..., ym be distinct representatives of the cosets of Gx in G*. For g G G,

we specify

(2-2) K{*,+£}) = <?,, £>MU})-

Let r be the restriction of p to xy + G. For every y G 77", there is a unique./ such

that \p~(y)\ = \pj(y)\- [Note that y|G must be congruent to one of y,, . . ., ym

modulo G,x, say to yy. Thus, on x, + G, I ¥^j, pj(y) = <-y, x^u^y — y¡) =

<-y, x,> • 0 = 0, since y - y, « G,x.] Thus ||iHL = (/" ■ #G)'/2, and ||»|| =

tm|| jit|| = m(#G). Thus f is an extremal measure on {x„ . . ., xm} + G, and that

gives us (i).

(ii) As in (i), we find a subgroup Gx of G and a measure /t G M(G) such that

#G, = m/2,

(2.3) ii*m^ = ii,    ||M||-#G   and   || &]„ = ((m/2)#G)l/2.

We let y,, . . ., ym/2 be distinct representatives of the cosets of G,x in G". For

g G G, we define for 1 < / < m/2,

(2.4) p{xj + g} = (yJ,gM{g})   and   K{^-m./J + «}) " »<^ f>i»(U})-

Straightforward calculations using the fact <y, xy> = ±1 for all/ and all y G G"

show that p%m = (m- # G)x/2.
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(iii) Let the measure ft on E = G + {x,, . . . , xm} be such that || /t|| = #E and

|| ju'IL = (#E)X/2. Then ¡i has the form u = SJ., <S(xy) * u,., where || u,.|| = #G for

1 < j < m. We shall then show for some 1 < j < m that

(2.5) If y G G" and u/(y) * 0, then o¿(y) = 0 for A: j*/

Assume that (2.5) holds for some7. Define A, to be {y G G*| nj(y) ¥= 0}. Then,

by Lemma 1.1 and the Plancherel Theorem, we have

(26) iitfb = (#4/#g),/2iim;il = (#v#g),/Vil

= (#4.)1/2(||u-|L/(#G)1/2),

whereas || ^Jb = (#G)1/2. Since || »»1«, = (#F)1/2 = m1/2(#G)'/2, we obtain

(2.7) ml<\#Aj)l/2 = || tffe = 110,-11, = (#G)1/2.

Evidently m divides (# G). (2.5) remains to be established.

We shall show that if 2x, # 0 for some j, then (2.5) holds for that j. We may

assume that 2xj ¥= 0.

Suppose that there exists y G G~ such that u^(y) =**= 0 and such that there exists

1 <jx <j2 < ■ ■ ■ <jk <m for which u¿(y) ¥= 0 for all /, and nj(y) = 0 for

/ £ {l,jx, • • ■ ,jk}- We shall derive a contradiction, thus establishing (2.5).

Because x„ Xj■, . . . , xjk are independent, we may specify extensions \ of y to H

such that 2*=1 < -\, x, > yÇ(y) has a nonzero value, independent of r, and such

that (\, x,> = <?2m>/?, for I < r < q, where ? > 3 is the order of x,. (If x, has

infinite order, we may choose A,, X2, X3 so that <\., x,> = e2mr/3.)

Since «"(A,) = <-\-, x,>/x¡(y) + 2<-\., x^^Uy/y) and the first factor of the first

term varies among at least three distinct roots of unity, | fi(\)\ is not a constant

function of r. That contradicts Lemma 1.1, and therefore (2.5) holds. That ends the

proof of Theorem 2.1.

3. Examples.

3.1. Proposition, (i) Each of the following three element sets is extremal in the

group indicated.

Z3 in Z3,

{0, 1, 2} in Z4.

(ii) Every three element extremal set can be obtained from one of the above by the

operations of group automorphism, passing to a subgroup, and translation.

3.2. Proposition, (i) Each of the following four element sets is extremal in the

group indicated.

Z4 in Z4,

{0, 1, 2, 3} in Z5,

{0, 1, 2, 4} in Z7,

{0, x, v, x + y) where 2x = 0, in any group (union of two cosets),

{(0, 0), (1, 0), (3, 1), (0, 1)} in Z4 X Z2.

(ii) Every four element extremal set can be obtained from one of the above by the

operations of group automorphism, passing to a subgroup, and translation.
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3.3. Proposition, (i) Each of the following five element sets is extremal in the

group indicated.

Z5 in Z5,

{0, 1, 2, 3, 4} in Z6,

{0, 1, 2, 5, 10} in ZX2,

{(0, 0), (2, 0), (0, 1), (2, 1), (1, 0)} in Z4 X Z2,

{(0, 0), (1, 0), (2, 0), (3, 0), (0, 1)} in Z4 X Z2,

{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0)} in Z2X Z2 X Z2.

(ii) Every five element extremal set can be obtained from one of the above by the

operations of group automorphism, passing to a subgroup, injection of one of the groups

above, and translation.

3.4. Remarks, (i) The proofs of 3.1-3.3 are tedious calculations involving

elimination of cases; that of 3.3 currently occupies some two hundred pages of

manuscript.

(ii) That there is but "one" two element extremal set is obvious,

(iii) We do not know about the six element case, or even if {0, 1, 2, 3, 4, 5} is

extremal in Z7. We do know that (0, 1, 2, 3, 4, 5, 6} is extremal in Zg.

3.5. Some specific questions, (i) Can the implication 2.1 (ii) be reversed? That is, if

all Xj have order two and {x,, . . ., xm) + G is extremal, must either m divide # G

or m be even and m/2 divide # G?

(ii) Is {0, 1, 2,...,» — 2} always extremal in Z„?

(iii) If || n±n\\ = o(log|n|), is u trivial? This is a question of Kahane. In view of

the trivial fact that if u is supported on a finite coset and || n±n\\ = o(log\n\), then

||u±,,|| = 0(\), and our examples in §2, "trivial" should be interpreted as "con-

centrated on a finite coset". Kahane's question seems ripe for solution.

4. The nonabelian case. The Sidon constant of a closed subset of a nonabelian

group is defined to be the supremum of the fractions ||u||/||jt||o> where ||u||

denotes the measure norm, || u||0 denotes the norm of u as an operator (by

convolution) on L2(G), and the supremum is taken over all nonzero measures

supported on the set in question.

Cartwright, Howlett and McMullen [C] have shown that a solvable group (and

some others) has Sidon constant equal to the square root of its cardinality. By

simpler means, we prove the following weaker (but more general) result.

4.1. Proposition. Let G be a finite group. Then the Sidon constant of G is at least
(.8)(#G)I/13.

Proof. We leave most of the details to the reader.

We claim that if k < log3# G, then there exist x„ . . . , xk G G such that

(4.1) #({l,x,}--- {l,x,}) = 2*.

The proof of the claim is straightforward.

Straightforward calculations show that if k > 2 and x,, x2 and G satisfy (4.1),

then the measure

(4-2) At = 8X + 8X¡ + 8   - 8X¡X2
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has norms || u|| = 4 and ||u||0 = ||(u * /Z)2||0/4 < ||(u * ß)2\\x/* < (124)1/4. [In the

sum for (u * /I)2, the terms involving masses at x,, xxx, x,x2, x^xf1, x\x\x, xxx22, x\

and x22 all cancel.]

On taking k = [(log3# G)/2] products of the form (4.2), we see that

a(G)>(4/(124)1/4)*

> [(124)1/4/4][#G](l082-(1/8)l0gl24)/l0B3 >[.834](#G),/13.

[Use of ||/i * j5||0 < 12 yields a(G) > (.866)(# G)1/16. More sophisticated choices

of u in (4.2) and higher powers of u * ß may yield somewhat larger bounds for

(#G).]
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