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AN INVARIANT FOR CONTINUOUS FACTORS

OF MARKOV SHIFTS

BRUCE KITCHENS

Abstract. Let 2ZA and ~ZB be subshifts of finite type with Markov measures (p, P)

and (q, Q). It is shown that if there is a continuous onto measure-preserving factor

map from ~S.A to 2ZB, then the block of the Jordan form of Q with nonzero

eigenvalues is a principal submatrix of the Jordan form of P. If ~LA and 2fi are

irreducible with the same topological entropy, then the same relationship holds for

the matrices A and B. As a consequence, Jj)(')/£/((')> the rat>° of the zeta

functions, is a polynomial. From this it is possible to construct a pair of equal-

entropy subshifts of finite type that have no common equal-entropy continuous

factor of finite type, and a strictly sofic system that cannot have an equal-entropy

subshift of finite type as a continuous factor.

1. Introduction. Let A he an I X I matrix of O's and l's. The subshift of finite

type, HA, determined by A is the closed invariant subspace of (1, . . . , /}z consist-

ing of all x = . . . x_,x0x, . . . such that A3V. = 1 for all /, together with the shift

transformation [9]. A Markov measure is defined on this space by a pair (p, P),

where P is a stochastic matrix compatible with A (i.e., positive, row-sum 1, and

Ptj > 0 exactly when Atj = 1) and/? is a probability vector withpP = p [9].

The following dynamical properties of subshifts of finite type will be used. A

subshift of finite type is topologically transitive when its transition matrix is

irreducible [9]. The irreducibility of the transition matrix is also the condition

needed for erogodicity with respect to any Markov measure [9]. The zeta function

of a dynamical system is £(/) = exp[2.™=x(Nn)tn/n], where Nn is the number of

points fixed by the nth power of the transformation. For a subshift of finite type,

1ZA, this has the form ÇA(t) = [t'CA(l/t)]~x, where CA(x) is the characteristic

polynomial of A [2]. The topological entropy of an irreducible subshift of finite

type is log X, where X is the largest positive real eigenvalue [9], and the measure-

theoretic entropy with respect to a Markov measure (p, P) is -S/yftiy log P¡j [9].

An irreducible subshift of finite type has a unique measure of maximal entropy [9],

which is a Markov measure whose matrix has the form P = ¿¿R~XAR (R a diagonal

matrix with strictly positive diagonal entries). Any continuous onto finite-to-one

factor map between two subshifts of finite type will carry the measure of maximal

entropy of one to the measure of maximal entropy of the other [3]. The Curtis-

Hedlund-Lyndon theorem [6] asserts that any continuous factor map between

subshifts of finite type is a block map composed with some power of the shift. This
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means that by going to a higher block presentation of the domain shift, any

continuous factor map can be expressed as a one-block map [1].

2. P's and ß's.

Theorem. // 1,A and 2fl are subshifts of finite type and if there is a continuous onto

factor map between them that takes (p, P) to (q, Q), then the block of the Jordan

form of Q with nonzero eigenvalues is a principal submatrix of the Jordan form of P.

Proof. We may assume that the factor map <b: HA —» 2ZB is a one-block map [10].

Take LA to be the alphabet of 1,A and LB the alphabet of SB. R will be the relation

matrix that represents the equivalence relation defined on LA by </>: for i G LA,

a G LB

' <í>0') = a,
otherwise.

A time-zero cylinder set is defined by [ax, . . ., an] = {x: x0 = ax, . . . , x„_, = an}.

The inverse image of a time-zero cylinder set in 2B is a finite union of time-zero

cylinder sets in ~2A, of the same length. For any [a,, ..., am\ Q 2B define ul".■ °"x

G R1^1 and vl">.°"] G RM by (u1""• -•>«•!),. = 2ft/»,,,, • • • ?4_¿, where the sum

is taken over all [i,, . . . , i„] in <¡>~x[ax, . . . , an] such that i„ = i,

(„[«., «J)a =   Í laQw •  ■  •  Qa._,a.      ^ <^n = *,

10 otherwise.

Let U be the collection of all ula>.°"] and V that of all u[a" -••**'. V generates all

of R|LäI; let % be the subspace of R|z*' generated by U. A computation using the

measure-preserving property of d> shows the diagram

R    -Í1    if'
Ria~{o   otl

%      -^      %

Ri lR

commutes, where the matrices operate by left multiplication, i.e. xPR = xRQ for

all x G %. Since R has rank \LB\, we have the desired result. Notice that this linear

algebra situation is equivalent to the existence of such a factor map.

Corollary A. If 2,A, 2B are irreducible subshifts of finite type and 2B is a

continuous finite-to-one factor of ~ZA, then the block of the Jordan form of B with

nonzero eigenvalues is a principal submatrix of the Jordan form of A. In particular, if

ÇA(t) and $B(t) are the zeta functions, then ÇB(t)/ÇA(t) is a polynomial.

Proof. ?.a and 2B have the same topological entropy, log X. The matrices P, Q

for the measures of maximal entropy are P =j¿R~xAR and Q =^S~XBS, where R,

S are the appropriate diagonal matrices of full rank. The desired result is obtained

by applying the thoerem. Recalling that ÇA(t) = (t^CA(l/t))~x, we have the

observation about the ratio of the zeta functions. We also have a completely

topological proof of this corollary, and M. Nasu [8] has proved the fact about the

ratio of the zeta functions using graph-theoretic techniques.
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Corollary B. There exist equal-entropy mixing [1] subshifts of finite type that

have no common equal-entropy continuous factor. This is in contrast to the Adler-

Marcus Theorem, which asserts that any such shifts have a common equal-entropy

continuous extension [1].

Proof. Take

A =
001
101
010

B =

00001
10000
01000
00100
00011

then CA(x) = x3 — x — 1, which is irreducible, and CB(x) = x5 — x4 — 1 =

(x3 — x — l)(x2 — x + 1). These are both mixing and have the same entropy.

Since CA(x) is irreducible over Z, any continuous finite-to-one factor of ~2A must

have the same zeta function. 2B has a fixed point, so any factor of it must have a

fixed point. There is no subshift of finite type that meets both of these require-

ments.

Corollary C. There exists a mixing strictly sofic system [11] that has no

equal-entropy subshift of finite type as a continuous factor. This should be compared to

the fact that any sofic system is a continuous equal-entropy factor of a subshift of

finite type [4].

Proof. Begin with HA as in the previous corollary. Obtain a strictly sofic system

of the same entropy by identifying the pair of two-blocks [2, 3] and [3, 2]. This sofic

system has a fixed point. Any subshift of finite type that is an equal-entropy

continuous factor of this system is also one for 2ZA. We already know there is no

such shift. This construction was noticed by Brian Marcus.

Corollary D. Any equal-entropy continuous factor of the full shift which is a

subshift of finite type is shift equivalent (in the sense of Williams [12]) to the same full

shift. This was previously proved in [7].

Proof. Any equal-entropy continuous factor of the full n-shift that is a subshift

of finite type has the zeta function (1 — nt)'x. R. Williams [12] has shown that any

subshift of finite type with this zeta function is shift equivalent to the full n-shift. It

is possible to deduce Corollaries B and C from the work of J. Cuntz and W.

Krieger [5].
I would like to thank my advisor, Brian Marcus, for getting me started and

keeping me going on these questions.
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