INVOLUTIONS WITH FIXED POINT SET OF CONSTANT CODIMENSION

KOICHI IWATA

ABSTRACT. The cobordism classes of manifolds admitting involutions with fixed point set of codimension 5 are determined by means of Stiefel-Whitney classes.

1. Introduction. Let \mathfrak{N}_n be the group of nonoriented cobordism classes of n-dimensional smooth manifolds and let J_n^k be its subset consisting of the classes which are represented by manifolds admitting smooth involutions with fixed point set of constant codimension k. J_n^k is a subgroup of \mathfrak{N}_n and $J_*^k = \sum_{n=k}^{\infty} J_n^k$ is an ideal of the nonoriented cobordism ring $\mathfrak{N}_* = \sum_{n=0}^{\infty} \mathfrak{N}_n$. Capobianco [1] proved the following results:

PROPOSITION 1. J_n^3 is the set of classes α in \mathfrak{N}_n with $W_1^j W_{n-j}(\alpha) = W_1^{i-5} W_{n-i} s_5(\alpha) = 0$, for each $i, j, 0 \le j \le n, 5 \le i \le n$.

Proposition 2. $J_{\star}^5 \subset J_{\star}^3$.

In this note, we shall prove

THEOREM.
$$J_n^5$$
 is the set of classes α in J_*^3 with $W_1^{n-8}W_2^4(\alpha) = W_1^{n-9}W_2^3W_3(\alpha) = W_1^{n-10}W_2^2W_3^2(\alpha) = W_1^{n-11}W_2W_3^3(\alpha) = W_1^{n-12}W_3^4(\alpha) = 0$.

2. Characteristic numbers of classes in J_*^5 . Let $\xi \to V$ be a smooth k-plane bundle over a closed smooth manifold V and let π : $RP(\xi) \to V$ be the associated projective. space bundle. Denote by a the characteristic class of the canonical line bundle $\lambda \to RP(\xi)$. Then by [2, §21], $H^*(RP(\xi); Z_2)$ is the free $H^*(V; Z_2)$ -module via π^* on the classes $1, a, \ldots, a^{k-1}$, subject to the relation $\sum_{j=0}^k a^{k-j} \pi^*(v_j) = 0$, where v_j is the jth Whitney class of ξ . The total Stiefel-Whitney class of $RP(\xi)$ is given by

$$W(RP(\xi)) = \pi^*(W(V)) \left(\sum_{j=0}^k (1+a)^{k-j} \pi^*(v_j) \right).$$

Now suppose that a class α is represented by a manifold M^n admitting an involution with fixed point set F of codimension k. Let $q: \nu \to F$ be the normal bundle. Then by [2, (22.2)], α is the class of $RP(\nu \oplus R)$, which is the total space of the projective space bundle associated to $p: \nu \oplus R \to F$. Let e, resp. e, be the characteristic class of the canonical line bundle e0 e1, resp. e2 e3, resp. e3.

Received by the editors March 26, 1981.

Then we have

PROPOSITION 3. For any
$$x \in H^{j}(F; \mathbb{Z}_{2}), 0 \leq j \leq n-k,$$
 $\langle p^{*}(x)e^{n-j}, [RP(\nu \oplus R)] \rangle = \langle q^{*}(x)c^{n-1-j}, [RP(\nu)] \rangle.$

The proof can be found in [5]. It follows from [2, §25]

PROPOSITION 4. If $q^*(x)c^{n-1-j}$ represents a characteristic class of $\lambda \to RP(\nu)$, then $\langle p^*(x)e^{n-j}, [RP(\nu \oplus R)] \rangle = 0$.

Let us apply these facts to the case of constant codimension 5.

Lemma 5. If
$$\alpha \in J_*^5$$
, then $W_1^{n-8}W_2^4(\alpha) = W_1^{n-9}W_2^3W_3(\alpha) = W_1^{n-10}W_2^2W_3^2(\alpha) = W_1^{n-11}W_2W_3^3(\alpha) = W_1^{n-12}W_3^4(\alpha) = 0$.

PROOF. Denote $W_j = W_j(RP(\nu \oplus R))$, $W'_j = W_j(RP(\nu))$ and let v_j , resp. w_j , be the jth Whitney class of ν , resp. F. By Propositions 3 and 4,

$$\begin{cases} W_1^{n-8}W_2^4 = p^*(w_1 + v_1)^{n-8}e^8, \\ (W_1' + c)^{n-8}c^7 = q^*(w_1 + v_1)^{n-8}c^7 \end{cases}$$

give $W_1^{n-8}W_2^4(\alpha) = 0$. The other relations can be obtained by the following computations:

$$\begin{cases} W_{1}^{n-9}W_{2}^{3}W_{3} = p^{*}\{(w_{1} + v_{1})^{n-9}w_{1}\}e^{8}, \\ (W_{1}' + c)^{n-9}\{(W_{2}' + W_{1}'c)(W_{3}' + W_{2}'c)c^{3} + (W_{1}' + c)(W_{2}' + W_{1}'c)^{2}c^{3} \\ + (W_{1}' + c)c^{7} + (W_{2}' + W_{1}'c + c^{2})^{4}\} \\ = q^{*}\{(w_{1} + v_{1})^{n-9}w_{1}\}c^{7}, \\ \begin{cases} W_{1}^{n-10}W_{2}^{2}W_{3}^{2} = p^{*}\{(w_{1} + v_{1})^{n-10}w_{1}^{2}\}e^{8}, \\ (W_{1}' + c)^{n-10}\{W_{1}'^{2}W_{2}'^{2}c^{3} + W_{3}'^{2}c^{3} + W_{2}'^{4}c\} = q^{*}\{(w_{1} + v_{1})^{n-10}w_{1}^{2}\}c^{7}, \end{cases} \\ \begin{cases} W_{1}^{n-11}W_{2}W_{3}^{3} = p^{*}\{(w_{1} + v_{1})^{n-11}w_{1}^{3}\}e^{8}, \\ (W_{1}' + c)^{n-11}\{W_{2}'^{2}W_{3}'^{2} + W_{2}'^{3}W_{3}'c + (W_{2}'^{4} + W_{1}'^{2}W_{3}'^{2} + W_{1}'W_{2}'^{2}W_{3}')c^{2} \\ + (W_{1}'W_{2}'^{3} + W_{1}'W_{3}'^{2})c^{3}\} \end{cases} \\ = q^{*}\{(w_{1} + v_{1})^{n-11}w_{1}^{3}\}c^{7}, \\ \begin{cases} W_{1}^{n-12}W_{3}^{4} = p^{*}\{(w_{1} + v_{1})^{n-12}w_{1}^{4}\}e^{8}, \\ (W_{1}' + c)^{n-12}W_{2}'^{4}c^{3} = q^{*}\{(w_{1} + v_{1})^{n-12}w_{1}^{4}\}c^{7}. \end{cases} \end{cases}$$

3. A system of generators of J_*^5 . As is well known, \mathfrak{R}_* is a graded polynomial algebra over Z_2 with one generator in each dimension n which is not of the form $2^r - 1$. We shall choose a suitable system of generators of \mathfrak{R}_* for our purpose. Let $(n_1, n_2, \ldots, n_{2k})$ be a 2k-tuple of nonnegative integers with $n_1 + n_2 + \cdots + n_{2k} = n - 2k + 1$. We denote by $RP(n_1, n_2, \ldots, n_{2k})$ the projective space bundle associated to the bundle $\lambda_1 \oplus \lambda_2 \oplus \cdots \oplus \lambda_{2k}$ over $RP(n_1) \times RP(n_2) \times \cdots \times RP(n_{2k})$, where λ_i $(i = 1, 2, \ldots, 2k)$ is the pull-back of the canonical line bundle over the *i*th factor. Stong [4, Lemma 3.4] proved that

 $RP(n_1, n_2, \ldots, n_{2k})$ belongs to J_n^k and is indecomposable in \mathfrak{N}_{\star} if and only if

$$\binom{n-1}{n_1}+\binom{n-1}{n_2}+\cdots+\binom{n-1}{n_{2k}}$$

is odd. First, we shall show

LEMMA 6. For each $n \ge 13$, not of the form 2^r or $2^r - 1$, there exists a generator $u_n \in J_n^5$ which is indecomposable in \mathfrak{R}_* .

PROOF. If $\binom{n-1}{n-9} \equiv 0 \mod 2$, $RP(n-9,0,\ldots,0)$ (9 zeroes) is indecomposable in \mathfrak{R}_* . Consider the case $\binom{n-1}{n-9} \equiv 1 \mod 2$. Let $n-1=2^{r_1}+2^{r_2}+\cdots+2^{r_t}$, $r_1>r_2>\cdots>r_t\geqslant 0$. Since $\binom{n-1}{n-9} = \binom{n-1}{8}$, $\{r_1,r_2,\ldots,r_t\}$ contains 3. When $\{r_1,r_2,\ldots,r_t\}$ does not contain 1, $RP(n-11,1,1,0,\ldots,0)$ (7 zeroes) is indecomposable in \mathfrak{R}_* . When $\{r_1,r_2,\ldots,r_t\}$ contains 1 but does not contain 2, we can choose $RP(n-13,2,2,0,\ldots,0)$ (7 zeroes) as an indecomposable generator of \mathfrak{R}_* . Finally, suppose that $\{r_1,r_2,\ldots,r_t\}$ contains both 1 and 2. Since n-1 is not of the form 2^r-1 or 2^r-2 , there exists a number i such that $r_i>r_{i+1}+1$. Then, $RP(2^{r_1}+\cdots+2^{r_t}-2,2^{r_{t+1}}+\cdots+2^{r_t}-14,8,0,\ldots,0)$ (7 zeroes) is indecomposable in \mathfrak{R}_* .

Let x_2 be the class of RP(2) and let x_{2^n} be the class of $RP(2^n) \cup RP(2)^n$ for n > 1. Denote by y_n (n = 5, 6) the class of RP(n - 3, 0, 0, 0) and by z_n (n = 9, 10, 12) the class of RP(n - 5, 0, 0, 0, 0, 0). Furthermore, by [3, §7, Remark] we know that there exists a class z_{11} of an indecomposable manifold which belongs to J_{11}^5 . Thus we have

LEMMA 7. \Re_* is a polynomial algebra over Z_2 with the system of generators: $\{x_{2^n}(n=1,2,\ldots), u_n \ (n \geq 13, n \neq 2^r, 2^r-1), y_5, y_6, z_9, z_{10}, z_{11}, z_{12}\}.$

Now we shall go into J_n^5 . By direct computations as in Lemma 5, we have

LEMMA 8. If $n \le 10$ or n = 12, then $s_n(\alpha) = 0$ for any $\alpha \in J_n^5$.

Moreover, we have

LEMMA 9. Let $n = 2^s$, $s \ge 4$. Then J_n^5 contains a class α such that $s_{2^{s-1},2^{s-1}}(\alpha) \equiv 1 \mod 2$.

PROOF. For s = 4, RP(7, 0, ..., 0) (9 zeroes) is as required. For s > 4,

$$RP(2^{s-3}-2, s^{s-3}-1, \ldots, 2^{s-3}-1, 0, 0)$$

is as required.

Let us observe monomials of the generators for \Re_* . First, notice that $J_*^3 \subset J_*^2$ follows from [4] and Proposition 1. By their definitions, $y_5, y_6 \in J_*^2$ and $z_9, z_{10}, z_{12} \in J_*^3$. Furthermore, Proposition 1 shows $y_5y_6, x_4^2 \in J_*^3$ and Lemma 9 shows $x_{2'}^2 \in J_*^5$ for $r \ge 3$. Clearly, $y_5^2 \in J_*^5$. Now consider y_6^2 . By the examination of the characteristic numbers, we can see that y_6^2 is the class $x_2y_5^2 + \{RP(3, 2, 2, 0, 0, 0)\}$. Recall that $RP(\lambda) = RP(3, 2, 2, 0, 0, 0)$ is the projective space bundle over $M = RP(3) \times RP(2)^2 \times RP(0)^3$ associated to $\lambda = \lambda_1 \oplus \lambda_2 \oplus \cdots \oplus \lambda_6 \to M$. An involution of M, given by $(a, b_1, b_2, c_1, c_2, c_3) \to (a, b_2, b_1, c_1, c_2, c_3)$, induces a fiber

preserving involution T of $RP(\lambda)$; i.e., we can define an involution T of $RP(\lambda)$ by

$$T(u_1, u_2, u_3, u_4, u_5, u_6) = (-u_1, -u_3, -u_2, -u_4, u_5, u_6).$$

It is easy to see that all the components of the fixed point set of T are of codimension 5. Therefore $y_6^2 \in J_*^5$. Referring to the results of [1], we can show that J_*^5 contains all monomials of generators for J_*^3 except those of the form

$$y_5 y_6 x(m)$$
, $z_9 x(m)$, $x_4^2 x(m)$, $z_{10} x(m)$, $z_{12} x(m)$.

Here, x(m) is the class of $RP(2^{r_1}) \times RP(2^{r_2}) \times \cdots \times RP(2^{r_r})$ for $m = 2^{r_1} + 2^{r_2} + \cdots + 2^{r_r}$, $r_1 > r_2 > \cdots > r_r > 0$. By straightforward calculation, we have the tables of characteristic numbers.

	$z_9x(n-9)$	$y_5 y_6 x (n-11)$
$W_1^{n-9}W_2^3W_3$	1	0
$W_1^{n-11}W_2W_3^3$		1

	$x_4^2x(n-8)$	$z_{10}x(n-10)$	$z_{12}x(n-12)$
$W_1^{n-8}W_2^4$	1 ;1	$ \begin{array}{ccc} 0 & n \equiv 0, 4 (8) \\ 1 & n \equiv 2, 6 (8) \end{array} $	$ \begin{array}{ccc} 0 & n \equiv 0, 2 (8) \\ 1 & n \equiv 4, 6 (8) \end{array} $
$W_1^{n-10}W_2^2W_3^2$	1	$ \begin{array}{ccc} 1 & n \equiv 0, 4 (8) \\ 0 & n \equiv 2, 6 (8) \end{array} $	$ \begin{array}{ccc} 1 & n \equiv 0, 6 (8) \\ 0 & n \equiv 2, 4 (8) \end{array} $
$W_1^{n-12}W_3^4$	1	0	$ \begin{array}{ccc} 1 & n \equiv 0, 2 (8) \\ 0 & n \equiv 4, 6 (8) \end{array} $

Using these, together with Lemmas 5, 7 and 8, we can attain our theorem immediately.

REMARK. As a corollary, we can show $J_{\star}^{2k+1} \subset J_{\star}^{5}$ for every integer $k \geq 3$.

REFERENCES

- 1. F. L. Capobianco, Cobordism classes represented by fiberings with fiber RP(2k + 1), Michigan Math. J. 24 (1977), 185–192. MR 57# 1514.
- 2. P. E. Conner, Differentiable periodic maps, 2nd ed., Lecture Notes in Math., vol. 738, Springer-Verlag, Berlin and New York, 1979.
- 3. C. Kosniowski and R. E. Stong, Involutions and characteristic numbers, Topology 17 (1978), 309-330.
- 4. R. E. Stong, On fibering of cobordism classes, Trans. Amer. Math. Soc. 178 (1973), 431-447. MR 47#4282.
- 5. T. Wada, Manifolds with involution whose fixed point set has codimension six, Bull. Yamagata Univ. Natur. Sci. 10 (1981), 193-205.

COLLEGE OF GENERAL EDUCATION, TÔHOKU UNIVERSITY, SENDAI, JAPAN