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INVOLUTIONS WTTH FLXED POINT SET

OF CONSTANT CODIMENSION

KOICHI IWATA

ABSTRACT.The cobordism classes of manifolds admitting involutions with fixed

point set of codimension 5 are determined by means of Stiefel-Whitney classes.

1. Introduction. Let 9ÎB be the group of nonoriented cobordism classes of

«-dimensional smooth manifolds and let /* be its subset consisting of the classes

which are represented by manifolds admitting smooth involutions with fixed point

set of constant codimension k. Jk is a subgroup of Sftn and /* = 2^°_t /„* is an

ideal of the nonoriented cobordism ring 9?, = 2„°_0 9i„. Capobianco [1] proved the

following results:

Proposition 1. L„3 is the set of classes a in 9?„ with W{WH_j(a) = W[~sWn_¡ss(á)

= 0, for each i,j, 0 < j < n, 5 < i < n.

Proposition 2. Jl c Jl.*       *

In this note, we shall prove

Theorem. /„5 is the set of classes a in Jl with W^W^a) = Wx~9W\W%(a) =

Wx"-wWlWÎ(a) = Wx"-nW2W¡(a) = Wxn-nW$(a) = 0.

2. Characteristic numbers of classes in J%. Let £ -* F be a smooth k-plnne bundle

over a closed smooth manifold V and let m: 7?F(|) —» V be the associated projec-

tive. space bundle. Denote by a the characteristic class of the canonical line bundle

\^>RP(Ç). Then by [2, §21], 77*(7?7>(£); Z2) is the free 77*(F; Z^-module via it*

on the classes 1, a, ... , ak~\ subject to the relation 2*=0 ak~J-n*(vf) = 0, where Vj

is the^'th Whitney class of |. The total Stiefel-Whitney class of RP(£) is given by

W(RP($) = tt*(W(V){ i (1 + a)*-V(CA

Now suppose that a class a is represented by a manifold M" admitting an

involution with fixed point set F of codimension k. Let q: v -» F be the normal

bundle. Then by [2, (22.2)], a is the class of RP(v © R), which is the total space of

the projective space bundle associated to p : v © 7? —» F. Let e, resp. c, be the

characteristic class of the canonical line bundle A —» RP(v @ R), resp. X —» RP(v).
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Then we have

Proposition 3. For any x £ HJ(F; Z^, 0 < j < n - k,

(p*(x)e"-\ [RP(v © 7?)]> = (q*(x)c"-l-J, [RP(")]>-

The proof can be found in [5]. It follows from [2, §25]

Proposition 4. Ifq*(x)c"~1~J represents a characteristic class ofX -» RP(v), then

<sp*(x)e"-j, [RP(v © R)\) = 0.

Let us apply these facts to the case of constant codimension 5.

Lemma 5. 7/ a £ J\, then Wxn-sW}(a) = W^WlW^a) = rF,"-10^2^2^) -
W^nW2W¡(a) = W*-X2WÎ(à) = 0.

1 1      3\ 1 i\    '

Proof. Denote Wj = Wj(RP(v © R)), W¡ = Wj(RP(v)) and let vp resp. vv,, be

they'th Whitney class of v, resp. F. By Propositions 3 and 4,

[ irr8iF24 = p*(wx + vxr~ v,

[(IF,' + c)"-8c7 = ?*(w, + t>,)""V

give  rF"~8IF24(a) = 0. The other relations can be obtained by the following

computations:
-

W¡-9WlW^ = p*{(wx + vx)"~9wx}es,

(W[ + c)"~9{(lV¡ + W'xc)(W¡ + W'2c)c* + (W'x + c)(IF2 + IFic)V

+ (W[ + cy + (W'2 + W[c + c2)4}

= q*{(wx + vxy-9wx}c->,

' Wrl0WiWl=p*{(wx + vx)n'mw2}es,

(wx + c)"-X0{w'x2w?c* + w;V + w2Ac) = q*{(wx + vxy-l0w2}c7,

Wxn-nW2W¡=p*{(wx + vx)"-uw3x}e*,

(wx + c)"""{ w22w? + w?w;c + (w* + w,2w'2 + w'xw22w^c

+ {wxw? + w'xw2y}

= q*{(wx + vxy-Uw\}c\

J Wn-I2w4 m p*{(Wl + ü1)n~12H'4}e8,

\(W'X + c)"-l2Wfc3 = q*{(wx + v.y-^w^c1.

3. A system of generators of J%. As is well known, 91^ is a graded polynomial

algebra over Z2 with one generator in each dimension n which is not of the form

2r — 1. We shall choose a suitable system of generators of 9?„ for our purpose. Let

(/!„ n2, . . . , n2k) be a 2&-tuple of nonnegative integers with nx + n2 + • • • +«2*

= n — 2k + 1. We denote by RP(nx, n2, . . ., n2k) the projective space bundle

associated to the bundle \, ffi X2 © • • • ®\2k over RP(nx) X RP^J

X • • • xRP(n2k), where \ (i = 1, 2, . . ., 2k) is the pull-back of the canonical

line   bundle   over   the   z'th   factor.   Stong   [4,   Lemma   3.4]   proved   that
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RP(nx, n2, . . ., n2k) belongs to /* and is indecomposable in 9?, if and only if

l    "i    )      \    »2   ) \\   n2k   )

is odd. First, we shall show

Lemma 6. For each n > 13, not of the form T or T — 1, there exists a generator

un E /„5 which is indecomposable in 9?^.

Proof. If ("Z9) = 0 mod 2, RP(n — 9, 0, . . . , 0) (9 zeroes) is indecomposable in

9?„. Consider the case (nnZ9) = 1 mod 2. Let n - 1 = 2r' + 2'2 + ■ ■ • +2r; rx > r2

> ■ ■ ■ > r, > 0. Since (n„Z9) = ("g1), {rx, r2, . . . , r,} contains 3. When

{r„ r2, . . ., r,} does not contain 1, RP(n — 11, 1, 1, 0, . . . , 0) (7 zeroes) is inde-

composable in 9?#. When {/■„ r2, .. . , r,} contains 1 but does not contain 2, we can

choose RP(n — 13, 2, 2, 0, . . . , 0) (7 zeroes) as an indecomposable generator of

9?,. Finally, suppose that {rx, r2, . . . , r,} contains both 1 and 2. Since n — 1 is not

of the form 2r — 1 or 2r — 2, there exists a number i such that r, > ri+x + 1. Then,

RP(2r< + ■ ■ ■ +2r< - 2, 2r— + • • • +2r- - 14, 8, 0, ... , 0) (7 zeroes) is indecom-

posable in $lm.

Let x2 be the class of RP(2) and let x2„ be the class of RP(2") u RP(2)n for

n > 1. Denote by v„ (« = 5, 6) the class of RP(n - 3, 0, 0, 0) and by z„ (n =

9, 10, 12) the class of RP(n - 5, 0, 0, 0, 0, 0). Furthermore, by [3, §7, Remark] we

know that there exists a class zxx of an indecomposable manifold which belongs to

/',. Thus we have

Lemma 7. 9î, ¿S a polynomial algebra over Z2 with the system of generators: {xy

(n = 1, 2, . . . ), un (n > 13, n j= 2r, 2r - l),y5,y6, z9, zxo, zxx, zX2}.

Now we shall go into Ln5. By direct computations as in Lemma 5, we have

Lemma 8. If n < 10 or n = 12, then sn(a) = 0 for any a £ Ln5.

Moreover, we have

Lemma 9. Let n — 2s, s > 4. Then 7„5 contains a class a such that s2,->2,-<(a) = 1

mod 2.

Proof. For s = 4, RPÇJ, 0, . . ., 0) (9 zeroes) is as required. For s > 4,

RP(2*-i - 2, ss~3 - 1, . . ., 2S~3 - 1, 0, 0)

is as required.

Let us observe monomials of the generators for 31 m. First, notice that Jl c J\

follows from [4] and Proposition 1. By their definitions, v5, v6 £ j\ and z9, zxo> zx2

£ Jl- Furthermore, Proposition 1 shows y5y6, x\ E Jl and Lemma 9 shows

x\r E Jl for r > 3. Clearly, v2 E /|. Now consider v2,. By the examination of the

characteristic numbers, we can see that y2. is the class x2y\ + {RP(3, 2, 2, 0, 0, 0)}.

Recall that RP(X) = 7*P(3, 2, 2, 0, 0, 0) is the projective space bundle over M =

RP(3) X RP(2)2 X RP(0)3 associated to X = Xx © \2 © • • • ©X6 -» M. An involu-

tion of M, given by (a, bx, b2, cx, c2, c3) -h> (a, b2, bx, c,, c2, c3),  induces a fiber
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preserving involution T of RP(X); i.e., we can define an involution T of RP(X) by

T(ux, u2, u3, «4, u5, u6) = (-ux, -u3, -u2, -u4, us, u6).

It is easy to see that all the components of the fixed point set of T are of

codimension 5. Therefore y 2 E /*. Referring to the results of [1], we can show that

Jl contains all monomials of generators for Jl except those of the form

y5y6x(m),   z9x(m),    xlx(m),   zxox(m),   zX2x(m).

Here, x(m) is the class of RP(2r>) X 7?F(2r*) X • • '• X 7?F(2r<) for m = 2r' + h

+ • • • +2r', rx > r2 > ■ • • > r, > 0. By straightforward calculation, we have the

tables of characteristic numbers.

W\n-9w3w3

wx"-uw2wj

z9x(n — 9)

1

y5yex(n - 11)

0

W^W*

Wn-wwiW2

Wnx~X2W*

x\x(n 8)

1

zxox(n — 10)

0 n = 0, 4 (8)

1 n = 2, 6 (8)

1    n = 0, 4 (8)

0   n = 2, 6(8)

0 /i = 0,4(8)

1 fi = 2, 6 (8)

z12x(« — 12)

0 n = 0, 2 (8)

1 n = 4, 6 (8)

1    n = 0, 6 (8)

0   « = 2, 4 (8)

1   « = 0, 2 (8)

0   n = 4, 6 (8)

Using these, together with Lemmas 5, 7 and 8, we can attain our theorem

immediately.

Remark. As a corollary, we can show L2*+1 c Jl for every integer k > 3.
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