A CHARACTERIZATION OF MANIFOLD DECOMPOSITIONS SATISFYING THE DISJOINT TRIPLES PROPERTY

DENNIS J. GARITY

ABSTRACT. A metric space X satisfies the Disjoint Triples Property (DD_3) if maps f_1 , f_2 and f_3 from B^2 into X are approximable by maps $\tilde{f_1}$, $\tilde{f_2}$ and $\tilde{f_3}$ with $\bigcap_{i=1}^3 \tilde{f_i}(B^2) = \emptyset$. Those CE decompositions of manifolds satisfying DD_3 and yielding finite-dimensional nonmanifold decomposition spaces are shown to be precisely those intrinsically 0-dimensional decompositions which yield nonshrinkable null cellular decompositions under amalgamation. This characterization results in another proof of the fact that $E^n/G \times E^1$ is secretly 0-dimensional where G is a CE use decomposition of E^n , n > 4, with E^n/G finite dimensional.

0. Introduction. Recent work of Cannon [C], Edwards [Ed] and Quinn [Q] characterizes topological n-manifolds, $n \ge 5$, in terms of a simple general position property, the Disjoint Disks Property (DDP). Daverman introduced a property closely related to the DDP, the Disjoint Triples Property (hereafter referred to as DD₃), and showed that certain decompositions satisfying DD₃ can be amalgamated so as to yield nonshrinkable null cellular decompositions. See [D1].

We show that finite-dimensional nonshrinkable decompositions satisfying DD₃ can be characterized as those intrinsically 0-dimensional decompositions having amalgamations as above. Thus, the class of finite-dimensional decompositions satisfying DD₃ but not DDP has the minimal amount of complexity required to yield nonmanifold decompositions in the sense that nonshrinkable null cellular decompositions form a prototype for this class.

It is also shown that $E^n/G \times E^1$ satisfies DD_3 where G is any CE used of E^n , $n \ge 4$. This result, combined with the above characterization, gives another proof of the fact that $E^n/G \times E^1$ is secretly 0-dimensional when E^n/G is finite dimensional [D3, p. 133].

This paper contains results presented in my thesis [G1] completed under the supervision of J. W. Cannon.

1. Notation and preliminaries. We will be considering cell-like (CE) upper semicontinuous decompositions (uscd) G of n-manifolds M. If G is such a decomposition, π or π_G represents the natural quotient map from M onto M/G, H_G represents the set consisting of the nondegenerate elements of G, and N_G represents

Received by the editors November 14, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 54F65, 54B15, 57N60, 57P95; Secondary 57N15, 54B10, 54N75.

Key words and phrases. Cell-like decomposition, cellular set, disjoint disks property, disjoint triples property, intrinsic dimension, null sequence, secret dimension, shrinkable.

^{© 1981} American Mathematical Society 0002-9939/81/0000-0583/\$02.50

834 D. J. GARITY

the union of these elements. Given a closed subset A of M/G, $M/\pi^{-1}(A) \equiv M/G'$ where G' is the decomposition having as elements the singletons of $M - \pi^{-1}(A)$ together with the elements of $\{\pi^{-1}(a)|a \in A\}$.

If p is a CE map from M onto X, $N_p \equiv N_L$ where L is the decomposition of M with elements $\{p^{-1}(x)|x\in X\}$. The map is said to be 1-1 over $A\subset X$ if $p|p^{-1}(A)$ is 1-1. The metric on a space X will be denoted by ρ or ρ_x . The space S of maps from a compact space X into a complete separable metric space Y will be given the topology induced by the metric $\rho_S(f,g)\equiv \sup_{x\in X}\rho_Y(f(x),g(x))$. By [K,p.93], (S,ρ_S) is a complete separable metric space. To say that a map f from f into f is approximable by maps f will mean, using the above notation, that for each f of there exists a map f with f is f in f

DEFINITION. Let G be a CE used of an n-manifold M and f a map from B^2 into M/G. Then maps $F: B^2 \to M$ such that $\pi \circ F$ is an approximation to f are called approximate lifts of f.

By [L, p. 506], f is always approximable by maps $\pi \circ F$ where F is an approximate lift of f.

DEFINITION. Let G be a CE used of an n-manifold M. Then G is secretly d-dimensional if π is approximable by CE maps p from M onto M/G with the dimension of $p(Np) \leq d$. G is said to be intrinsically d-dimensional if it is secretly d-dimensional, but is not secretly (d-1)-dimensional.

DEFINITION. A metric space X has property DD_K , $2 \le K < \infty$, if maps f_i : $B^2 \to X$, $1 \le i \le K$, are approximable by maps $\tilde{f_i}$: $B^2 \to X$, $1 \le i \le K$, with $\bigcap_{i=1}^K \tilde{f_i}(B^2) = \emptyset$.

REMARK 1. Property DDP is the same as DD_2 . The Disjoint Triples Property is the same as DD_3 . A decomposition G of M is said to satisfy DD_K if M/G satisfies DD_K .

DEFINITION. Let G be a CE used of an n-manifold M and let $\varepsilon > 0$ be fixed. Then \mathcal{C} is said to be an ε -amalgamation of G if

- (i) \mathcal{C} is a CE used of M,
- (ii) each $g \in G$ is contained in some $a \in \mathcal{C}$, and
- (iii) for each $x \in M/\mathcal{Q}$, $\pi_G \circ \pi_{\mathcal{Q}}^{-1}(x)$ is of diameter $\langle \varepsilon \rangle$.

REMARK 2. The space M/A can be thought of as a CE decomposition of M/G.

The following technical lemma can be proved using standard properties of CE maps.

LEMMA 1. Let G be a CE used of an n-manifold M, $n \ge 5$, and A closed in M/G. If pairs of maps (f_1, f_2) : $B^2 \to M/G$ are approximable by pairs $(\tilde{f}_1, \tilde{f}_2)$ with $\tilde{f}_1(B^2) \cap \tilde{f}_2(B^2) \cap A = \emptyset$, then $M/\pi^{-1}(A)$ satisfies DDP.

2. Spaces that satisfy DD_3 . In this section, sufficient conditions for a decomposition to satisfy DD_3 are given and results leading to the characterization of the next section are presented.

PROPOSITION 1. Let G be a CE used of an n-manifold M, n > 4, such that H_G consists of a countable number of cellular sets. Then M/G satisfies DD_3 .

PROOF. Choose $\varepsilon > 0$ and maps $f_e \colon B^2 \to M/G$, $1 \le e \le 3$. Choose approximate lifts F_1 and F_2 to f_1 and f_2 so that $F_1(B^2) \cap F_2(B^2)$ consists of (at most) a finite number of points, and so that $\tilde{f}_e \equiv \pi \circ F_e$, e = 1 or 2, is within ε of f_e . Then $\tilde{f}_1(B^2) \cap \tilde{f}_2(B^2) \equiv A$ consists of at most countably many points in M/G.

Since G is cellular, an ε approximation \tilde{f}_3 to f_3 can be found so that $\tilde{f}_3(B^2) \cap A = \emptyset$. The required approximations are \tilde{f}_1 , \tilde{f}_2 and \tilde{f}_3 .

The examples of [D1, W and DW] are of nonshrinkable decompositions satisfying the hypotheses of Proposition 1, thus showing that there exist nonmanifold spaces satisfying DD₃.

PROPOSITION 2. A complete separable metric, ANR X, satisfies DD_3 if and only if each map f from B^2 into X is approximable by maps \tilde{f} such that $\{\tilde{f}^{-1}(x)\}$ has cardinality less than 3 for each x in X.

PROOF. The proof of the forward implication is modeled after the argument presented in [C, Theorem 2.1]. Let $\{(P_i(1), P_i(2), P_i(3))\}$, $1 \le i < \infty$, be a countable collection of triples of subdiscs of B^2 chosen so that:

- (1) for each i, $P_i(j) \cap P_i(k) = \emptyset$ for $j \neq k$; and
- (2) given distinct points x_1 , x_2 and x_3 in B^2 , there exists an i such that $x_e \in P_i(e)$, $1 \le e \le 3$.

Choose $\varepsilon > 0$ and $f: B^2 \to X$. Since X satisfies DD_3 , $\theta_i \equiv \{h: B^2 \to X | \bigcap_{e=1}^3 h(P_i(e)) = \emptyset\}$ is dense and open in the space of all maps from B^2 into X. It follows from the Baire Category Theorem [CV, p. 89] that there exists a map \tilde{f} in $\bigcap_{i=1}^{\infty} \theta_i$ with $\rho(f, \tilde{f}) < \varepsilon$. The map \tilde{f} is the required approximation to f.

For the reverse implication, choose $\varepsilon > 0$ and maps $f_e \colon B^2 \to X$, $1 \le i \le 3$. Choose arcs h joining $f_1(\partial B^2)$ to $f_2(\partial B^2)$ and l joining $f_2(\partial B^2)$ to $f_3(\partial B^2)$. Then $(\bigcup_{e=1}^3 f_e(B^2)) \cup h \cup l$ can be viewed as the image of a map F from B^2 into X, with subdiscs D_e , $1 \le e \le 3$, of B^2 so that $F|D_e$ is an $\varepsilon/3$ approximation to f_e .

By assumption, F can be $\varepsilon/3$ approximated by a map \tilde{f} so that each point of X has less than 3 preimages under \tilde{f} . The required approximations to f_e , $1 \le e \le 3$, are the $\tilde{f}|D_e$.

COROLLARY 1. Let G be a CE used of an n-manifold M, $n \ge 5$, so that M/G is an ANR and satisfies DD_3 . Then G is secretly 0-dimensional.

PROOF. Let $\{(F_i, H_i)\}$, $1 \le i < \infty$, be a countable dense subset of the space of pairs of maps from B^2 into M/G. The argument used in the proof of Proposition 2 allows one to require that, for each i, $F_i^{-1}(x) \cup H_i^{-1}(x)$ has cardinality less than 3 for each $x \in M/G$.

Thus, each $H_i(B^2)$ is the, at most, 2-to-1 image of a 2-dimensional space, and so has dimension ≤ 3 [En, p. 134]. This allows one to further require that, for each i, $F_i^{-1}(H_i(B^2))$ is 0-dimensional [C, Theorem 2.2]. Thus, $F_i(B^2) \cap H_i(B^2)$ is the 1-1 image of a 0-dimensional set and so has dimension 0 [En, p. 134]. Let $A = \bigcup_{i=1}^{\infty} [F_i(B^2) \cap H_i(B^2)]$.

The set A is a 0-dimensional $F\sigma$, and so by [En, p. 45], there exist a 0-dimensional G_{δ} , L, with $A \subset L$. Let C be any closed set in M/G - L. Lemma 1 implies

836 D. J. GARITY

that $M/\pi^{-1}(C)$ satisfies the DDP, so by [Ed], $p: M \to M/\pi^{-1}(C)$ is approximable by homeomorphisms. By [Ev, p. 15], it follows that $\pi: M \to M/G$ is approximable by a CE map q that is 1-1 over M/G - L. It follows that $q(N_q)$ is contained in the 0-dimensional set L, and so G is secretly 0-dimensional.

PROPOSITION 3. Let G be a CE used of an n-manifold M, n > 4. Then $(M/G \times E^1)$ satisfies DD_3 .

PROOF. Choose $\varepsilon > 0$ and maps f_e : $B^2 \to (M/G \times E^1)$, $1 \le e \le 3$. Let p be the projection of $M/G \times E^1$ onto M/G and q the projection onto E^1 . Choose a triangulation T of B^2 so that for each $\sigma \in T$, and for $1 \le e \le 3$, there exist open sets $V_e(\sigma)$ and $V_e(\sigma)$ in M/G, and open intervals $V_e(\sigma)$ and $V_e(\sigma)$ in $V_e(\sigma)$ in

- $(1) f_e(\sigma) \subset V_e(\sigma) \times K_e(\sigma) \subset W_e(\sigma) \times J_e(\sigma);$
- (2) $W_{\epsilon}(\sigma) \times J_{\epsilon}(\sigma)$ has diameter $< \epsilon/3$; and
- (3) $V_e(\sigma)$ contracts in $W_e(\sigma)$.
- By [D2, Lemma 2.6], there exists $\varepsilon/3$ approximations h_e to f_e , $1 \le e \le 3$, so that
- $(4) (p \circ h_e|T^1) \cap (p \circ h_d|T^1) = \emptyset$ for $e \neq d$, and
- (5) for each σ in T, $h_e(\sigma) \subset V_e(\sigma) \times K_e(\sigma)$.

Let P_1 , P_2 and P_3 be pairwise disjoint dense subsets of E^1 . For each two cell $\sigma \in T$, let $C(\sigma)$ be a small interior collar on $\partial \sigma$. Let $N(\sigma)$ represent the interior boundary of $C(\sigma)$, $C = \bigcup_{\sigma \in T} C(\sigma)$, and $U = B^2 - C$.

Focus attention on a specific two cell σ . Define an approximation \tilde{f}_e to h_e , $1 \le e \le 3$, as follows:

- (6) $\tilde{f}_e|C(\sigma)$ is defined so that $p \circ \tilde{f}_e(C(\sigma)) = p \circ h_e(\partial \sigma)$;
- (7) $q \circ \tilde{f}_e(N(\sigma)) \equiv a_e(\sigma)$, a point in $P_e \cap K_e(\sigma)$;
- (8) $\tilde{f}_e|C(\sigma)$ is extended to all of σ using the contraction of $V_e(\sigma)$ in $W_e(\sigma)$ so that $q \circ \tilde{f}_e(\sigma C(\sigma)) = a_e(\sigma)$.

Condition (6) guarantees that $[p(\tilde{f}_e(C))] \cap [p(\tilde{f}_d(C))] = \emptyset$ for $e \neq d$. Condition (8) guarantees that $[q(\tilde{f}_e(U))] \cap [q(\tilde{f}_d(U))] = \emptyset$ for $e \neq d$. It follows that $\bigcap_{e=1}^3 \tilde{f}_e(B^2) = \emptyset$ and that $M/G \times E^1$ satisfies DD₃.

THEOREM 1 [D3, p. 133]. Let G be as in Propositions 3 with M/G finite dimensional. Then $M/G \times E^1$ is secretly 0-dimensional.

PROOF. This follows directly from Corollary 1 and Proposition 3.

3. The characterization. The following amalgamation lemma can be found in slightly different form in [D1, p. 173 and Ed]. It has shown its importance in decomposition theory, both in dimension 4 and in dimensions > 5. See [DP, DR and Ed].

AMALGAMATION LEMMA. Let G be a CE used of an n-manifold M, n > 3, so that $\pi(N\pi)$ is 0-dimensional. Let $F = \bigcup_{i=1}^{\infty} F_i$ be an Fo set in $M/G - \pi(N_G)$ of dimension $\leq n-2$. Then, for each $\varepsilon > 0$, there exists an ε -amalgamation $A(\varepsilon)$ of G such that

- (1) $H_{A(\epsilon)}$ consists of a null sequence and
- (2) $N_{A(\varepsilon)} \cap \pi^{-1}(F) = \emptyset$.

The next lemma follows from Bing's Shrinking Criterion [B]. For a proof, see [D1, p. 174 or Ed].

LEMMA 3. Let G be a CE used of an n-manifold M, n > 5, such that for every $\varepsilon > 0$ there exists an ε -amalgamation $A(\varepsilon)$ of G with $M/A(\varepsilon) \cong M$. Then $M/G \cong M$.

THEOREM 2 (CHARACTERIZATION THEOREM). Let G be a CE used of an n-manifold M, $n \ge 5$, with M/G an ANR. Then M/G satisfies DD_3 but not DDP if and only if

- (1) G is intrinsically 0-dimensional, i.e. there exists a CE used G' of M with $M/G \cong M/G' \ncong M$, and $\pi_{G'}(N_{G'})$ of dimension 0, and
- (2) for each $\varepsilon > 0$, there exists an ε -amalgamation $A(\varepsilon)$ of G' with $H_{A(\varepsilon)}$ consisting of a null sequence of cellular sets, and $M/A(\varepsilon) \ncong M$.

PROOF. Part of the proof of the forward implication can be found in [D1, p. 175]. For completeness, the entire proof is presented. Assume that M/\tilde{G} satisfies DD₃ but not DDP. Then by Corollary 1 and [Ed], there exists a decomposition \tilde{G} of M with $\pi_{\tilde{G}}(N_{\tilde{G}})$ of dimension 0, and $M/\tilde{G} \cong M/G \ncong M$. Let $\{F_i\}$, $1 \le i < \infty$, be a countable dense subset of the space of maps from B^2 into M/G. By an argument similar to that used in the proof of Proposition 2, we can require that, for each $x \in M/G$, $\bigcup_{i=1}^{\infty} F_i^{-1}(x)$ has cardinality less than 3. Let p be the projection map from M onto M/\tilde{G} .

Each $M/p^{-1}(F_i(B^2))$ satisfies the DDP by Lemma 1. It follows from [**Ed** and **Ev**, p. 15] that p is approximable by a CE map q from M onto M/\tilde{G} , such that q is 1-1 over $\bigcup_{i=1}^{\infty} F_i(B^2)$ and over $M/\tilde{G} - S$ where S is a 0-dimensional set containing $p(N_{\tilde{G}})$. Let G' be the decomposition such that $N_{G'} = N_q$. Then G' satisfies (1).

By [En, p. 134], each $F_i(B^2)$ has dimension less than or equal to 3. (In fact, the F_i can be chosen so that each $F_i(B^2)$ has dimension = 2. See [D2, Theorem 3.3].) Let $F = \bigcup_{i=1}^{\infty} F_i(B^2)$. Then F is an at most 3-dimensional $F\sigma$ set. So the amalgamation lemma can be applied to obtain for each ε , an ε -amalgamation $A(\varepsilon)$ of G', so that $H_{A(\varepsilon)}$ consists of a null sequence, and so that $P(N_{A(\varepsilon)}) \cap F = \emptyset$. Lemma 3 allows one to assume that $M/A(\varepsilon) \ncong M$. It remains to check that $A(\varepsilon)$ is cellular.

Each point x in $M/A(\varepsilon)$ satisfies McMillan's Cellularity Criterion [M, p. 328] since $\pi_{A(\varepsilon)}(N_{A(\varepsilon)}) \cap \pi_{A(\varepsilon)}(F) = \emptyset$. This implies that each element of $A(\varepsilon)$ satisfies McMillan's Cellularity Criterion in M, and so by [M, p. 328], $A(\varepsilon)$ is cellular.

For the proof of the reverse implication, assume that (1) and (2) hold. By [Ed], G fails to satisfy the DDP. Choose $\varepsilon > 0$ and maps f_e , $1 \le e \le 3$, from B^2 into M/G. Let A be an $\varepsilon/4$ amalgamation of G' as in (2). Let $P = \pi_A \circ \pi_G^{-1}$. For each X in M/G, let U(X) be the $\varepsilon/2$ neighborhood of X. The fact that G and A are used, along with the choice of A, yields the result that each P(U(X)) contains a nonempty open set V(X).

Cover $\bigcup_{e=1}^{3} f_e(B^2)$ by a finite number of these sets, V_1, \ldots, V_s . Let δ = the Lebesgue number of the cover $\{(V_i)\}$, $1 \le i \le s$, of $\bigcup_{e=1}^{3} f_e(B^2)$. Proposition 1 implies that there exist $\delta/3$ approximations F_e to $p \circ f_e$, $1 \le e \le 3$, so that $\bigcap_{e=1}^{3} F_e(B^2) = \emptyset$. Choose approximate lifts $\tilde{f}_e \colon B^2 \to M/G$ to the F_e so that

838 D. J. GARITY

 $p(p \circ \tilde{f}_e, F_e) < \delta/3$, and so that $\bigcap_{e=1}^3 p \circ \tilde{f}_e(B^2) = \emptyset$. It follows that the \tilde{f}_e are ϵ approximations to the f_e , $1 \le e \le 3$, with $\bigcap_{e=1}^3 \tilde{f}_e(B^2) = \emptyset$. This completes the proof.

REMARK 3. The characterization given in Theorem 2 is nontrivial in the following sense. Not all cellular decompositions of M are intrinsically 0-dimensional [DG] and there exist 0-dimensional cellular decompositions failing to satisfy DD_3 [G2].

REFERENCES

- [B] R. H. Bing, Upper semicontinuous decompositions of E³, Ann. of Math. (2) 65 (1957), 363-374.
- [C] J. W. Cannon, Shrinking cell-like decompositions of manifolds. Codimension three, Ann. of Math. (2) 110 (1979), 83-112.
 - [CV] C. D. Christenson and W. L. Voxman, Aspects of topology, Marcel Dekker, New York, 1977.
- [D1] R. J. Daverman, A nonshrinkable decomposition of Sⁿ determined by a null sequence of cellular sets, Proc. Amer. Math. Soc. 75 (1979), 171-176.
 - [D2] _____, Detecting the disjoint disks property, Pacific J. Math. (to appear).
 - [D3] _____, Products of cell-like decompositions, Topology Appl. 11 (1980), 121-139.
- [DG] R. J. Daverman and D. J. Garity, Intrinsically (n-2)-dimensional cellular decompositions of E^n (preprint).
- [DP] R. J. Daverman and D. K. Preston, Cell-like 1-demensional decompositions of S³ are 4-manifold factors, Houston J. Math. 6 (1980), 491-502.
- [DR] R. J. Daverman and W. H. Row, Cell-like 0-dimensional decompositions of S³ are 4-manifold factors, Trans. Amer. Math. Soc. 254 (1979), 217-236.
- [DW] R. J. Daverman and J. J. Walsh, A nonshrinkable decomposition of S^n involving a null sequence of cellular arcs, Trans. Amer. Math. Soc. (to appear).
 - [En] R. Engelking, Dimension theory, North-Holland, Amsterdam, 1978.
- [Ed] R. D. Edwards, Approximating certain cell-like maps by homeomorphisms, (preprint); Notices Amer. Math. Soc. 24 (1977), A-649; Abstract #751-G5.
- [Ev] D. L. Everett, Embedding and product theorems for decompositions spaces, Doctoral Thesis, University of Wisconsin, Madison, 1976.
- [G1] D. J. Garity, General position properties of homology manifolds, Doctoral Thesis, University of Wisconsin, Madison, 1980.
 - [G2] _____, General position properties related to the Disjoint Discs Property (preprint).
 - [K] K. Kuratowski, Topology. Vol. II, Academic Press, New York, 1968.
- [L] R. C. Lacher, Cell-like mappings and their generalizations, Bull. Amer. Math. Soc. 83 (1977), 495-552.
 - [M] D. R. McMillan Jr., A criterion for cellularity in a manifold, Ann. of Math. (2) 79 (1964), 327-337.
 - [Q] F. Quinn, Ends of maps. I, Ann. of Math. (2) 11 (1979), 275-331.
- [W] D. G. Wright, A decomposition of E^n (n > 3) into points and a null sequence of cellular sets, General Topology Appl. 10 (1979), 297-304.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE, KNOXVILLE, TENNESSEE 37916

Current address: Department of Mathematics, Oregon State University, Corvallis, Oregon 97331