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INVERSE ELEMENTARY DIVISOR PROBLEM

FOR NONNEGATIVE MATRICES1

HENRYK MTNC

Abstract. Given a diagonalizable positive matrix A, there exists a positive matrix

with the same spectrum as A, and with arbitrarily prescribed elementary divisors,

provided that elementary divisors corresponding to nonreal eigenvalues occur in

conjugate pairs. It is also shown that a similar result holds for doubly stochastic

matrices.

1. Introduction. One of the most important unsolved problems of linear algebra is

the inverse eigenvalue problem for nonnegative matrices: to determine necessary

and sufficient conditions that a given «-tuple of complex numbers be the spectrum

of an « X « nonnegative matrix, i.e., matrix with nonnegative entries. (For infor-

mation on the status of the problem and bibliography see [1, 2].) The inverse

elementary divisor problem for nonnegative matrices asks for necessary and suffi-

cient conditions for a given matrix to be similar to a nonnegative matrix, or

equivalently, necessary and sufficient conditions for the existence of a nonnegative

matrix with prescribed elementary divisors. The inverse elementary divisor problem

clearly contains the inverse eigenvalue problem, and it is also unsolved. In this

paper we consider the inverse elementary divisor problem modulo the inverse

eigenvalue problem: given a nonnegative matrix A, does there exist a nonnegative

matrix with the same spectrum as A and with arbitrarily prescribed elementary

divisors (provided that prescribed elementary divisors corresponding to nonreal

eigenvalues occur in conjugate pairs)? We show (Theorem 1) that the answer is in

the affirmative in case A is a diagonalizable positive matrix. It is not known if the

theorem holds for a general nonnegative matrix A.

In Theorem 2 we establish a similar result for doubly stochastic matrices. It

should be noted that in the case of doubly stochastic matrices the condition that A

be positive cannot be relaxed (see §2).

2. Results. Let Jn denote the n X n matrix all of whose entries are l//i, and let

E¡j be the n X n matrix with 1 in the (i,j) position and O's elsewhere. Denote the

y'th column of S by 5W, and the submatrix obtained from S by deleting rows

/,, i2, . . ■ ,ik and columnsjx,j2, . . . ,jk, by S(/„ i2, . . . , ik\j\,j2, . . . ,jk). If S is a

nonsingular matrix we denote the (i,j) entry of S~l by s¡j.

Let A = (a¡j) be an n X n diagonalizable positive matrix with eigenvalues

A,, A2, . . ., A„ which are ordered as follows: A, > A2 > • • •  >\ are real, and the
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other n — p eigenvalues are complex nonreal; equal eigenvalues are consecutive,

and A, is conjugate to \q+, for t = p + \,p + 2, ...,p + q, where q = (tj — p)/2.

Theorem 1. Given a diagonalizable positive matrix A, there exists a positive matrix

with the same spectrum as A, and with arbitrarily prescribed elementary divisors,

provided that elementary divisors corresponding to nonreal eigenvalues occur in

conjugate pairs.

Our second result is an analogue of Theorem 1 for doubly stochastic matrices,

and extends the result in [3, Theorem 4] to matrices with complex eigenvalues. A

complex matrix is called doubly quasi-stochastic if all its row sums and column

sums are 1. A necessary and sufficient condition that an n X n matrix A be

quasi-stochastic is that

AJ   = JA = /„.n n n

A nonnegative (real) doubly quasi-stochastic matrix is called doubly-stochastic.

The existence of a nonnegative matrix with a prescribed spectrum does not imply

the existence of a doubly stochastic matrix with the same spectrum, even if the

maximal eigenvalue is 1. For example, the eigenvalues of a nonnegative matrix of

the form

r

1    0    0
0    0     t

are 1, -1, /, for any 1 > t > 0, but there exists no 3 X 3 doubly stochastic matrix

with these eigenvalues. The situation with respect to the inverse elementary divisor

problems is similar. It was shown in [1, Theorem 3(b)] that there exists no doubly

stochastic 3x3 matrix with elementary divisors A — 1 and (A + \)2, although the

doubly stochastic matrix §/3 — \l3 has eigenvalues 1, -\, -\, and the row-

stochastic matrix

r0    2    0 I
I
2 1    0     1

1     1     0

has elementary divisors A — 1 and (A + \)2. If, however, the prescribed eleme. tary

divisors involve eigenvalues of a diagonalizable positive matrix, then the case of

doubly stochastic matrices is analogous to that of general nonnegative matrices.

Theorem 2. Given a diagonalizable positive doubly stochastic matrix A, there exists

a positive doubly stochastic matrix with the same spectrum as A, and with arbitrarily

prescribed elementary divisors, provided that elementary divisors corresponding to

nonreal eigenvalues occur in conjugate pairs.

3. Proofs. We start with a simple lemma.

Lemma. Let S be an n X n nonsingular matrix whose first p columns are real and,

for t = p + l,p + 2, . . . ,p + q, q = (n — p)/2, columns t and q + t are con-

jugate. Then rows t and q + t of S~l are conjugate for t = p + \,p + 2, . . . ,p + q.
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Proof. Transpose columns t and q + t of S, t = p + \,p + 2, . . . ,p + q; the

resulting matrix is S, the conjugate of S. Hence

det(5) = (-l)'7del(S).

Thus det(S) is real if q is even, and pure imaginary if q is odd. Similarly,

det(S(U|/, q + t))

is real or pure imaginary according as q is odd or even, for any i, j and t,

1 < i <j < n, p < t < p + q. It follows that

det(S(i,j\t, q + t))/det(S)

is pure imaginary.

We have

stí = (-l)'+Jdct(SOV))/dct(S),

and expanding det(S(J\t)) by column q + t, we obtain

hj = H)'+> 2 (-l)''+?+'"S,9+, dct(S(i,j\t, q + t))/dct(S),
i-i

where

r

Now,

I ' if i <j,

\ I -1   if /• >j.

and

°i,q + t "i,t

det(S(i,j\t, q + t))/det(S) = -det(S(i,j\t, q + t))/det(S).

Therefore for t = p + 1, p + 2, . . . , p + q, and j = 1, 2, . . . , n,

% = (-iy+l+J 2 (-l)'+'^ det(S(i,/|/. o + 0)/det(S)
i=i

= (-l)"+,+J det(S0|9 + 0)/det(5) = sq+tJ.

Proof of Theorem 1. Let D = diag(A,, A2, . . . , ÂJ, where A,, A2, . . . , A„ are the

eigenvalues of A, ordered as in §2. Let S be a nonsingular matrix whose7th column

is an eigenvector corresponding to Ay, j = 1, 2, . . ., n, and whose columns y and

p + j are conjugate, j = p + 1, p + 2, . . . , p + q, where q = (n — p)/2. Then

SlAS = D.

Now, let X be the subset of {2, 3, . . ., n — 1} so that D + 2,sJk- Ell+l is the

Jordan normal form of the required matrix. We show that the matrix

tex

,
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is real. Note that the first/? rows of S"1 are real. For, they must be multiples of real

vectors (being eigenvectors of A T corresponding to real eigenvalues), and S~lS =

In. Further, by the lemma, rows t and q + t of S~l are conjugate for / = p + 1,

p + 2, . . . ,p + q. Now,

°ij =    Zj    sitst+\j>
t&x

i,j = 1, . . . , n. For t = 1, . . . ,p — 1, both sit and st+lJ are real. For any t,

p < t <p + q,iî t belongs to X (note that/?, q, n $ X), then t + q e X, and

Sil   —  Si,t + q      an"        St+\J  ~ St + q+lJ

for all / and /'. ThereforeJ

n p+q-\

Zj     SitSt+lj  ~ 2j       \SitSt+\j Si,t+qSl + q+lj)
t=p t=p + \
teX rex

p + q-l

= 2   2    Re(i/Â+^)-
t=p + i

tex

Hence btJ is real for all /' andy.

Now, SDS1 = A is positive, and therefore A + eB is positive for sufficiently

small positive e. Thus

A + eB = s(d + e 2   ^,,+ iV
V tex I

is positive and has the required elementary divisors.

Proof of Theorem 2. As in the proof of Theorem 1, let D =

diag(A„ A2, . . ., A„), where A, = 1, A2, . . . , A„ are the eigenvalues of A ordered as

in §2, and let D + 2,eA- Ell+l be the Jordan normal form of the required matrix.

We construct a nonsingular matrix S as follows. The jth column of S is an

eigenvector corresponding to A,, j = I, 2, . . . , n, the first column being

[1 1 • • • \]T/Vn , columns 2, 3, . . . ,p being real and columns j and y + p being

conjugate for j = p + \,p + 2, . . . , q. Then, as in the proof of Theorem 1, the

matrix

C= S[D + e 2   £,,,+1 p-1
V (EX /

is positive for sufficiently small positive e. It remains to show that C is doubly

quasi-stochastic and thus stochastic.

The first row of S'1 is [1 1 • • • 1]/ V« , since it is an eigenvector corresponding

to 1 of positive doubly stochastic matrix A T. It follows that all the other row sums

of S~* and all the column sums of S, except the first, are zero. Therefore 5""1/,, is

the matrix whose first row is [1 1 ■ • • 1]/Vñ and the other n — 1 rows are zero,

and JnS is the transpose of S-1./,,. If we write D + e"ZteX Eii+l in the form 1 4- G,

where G is (n — 1) X (n — 1), then

(1 + G)(S-lJ„) = S-*Jn,
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and

JnS(\ + G) = J„S.

It follows that

CJ„ = S((l + G)S-lJn) = S(S-lJ„) = /„,

and similarly

J„C = (/„SO + G))S-' = (/„5)S-' = /„.
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