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BOUNDEDNESS OF MAXIMAL FUNCTIONS AND

SINGULAR INTEGRALS IN WEIGHTED V SPACES

JOSÉ L. RUBIO DE FRANCIA

Abstract. Given a weight h>(jc) > 0 in R", necessary and sufficient conditions are

found for the boundedness of the Hardy-Littlewood maximal function and singular

integral operators from Lp(w) to some other weighted V space. The dual question

is also considered and partially answered.

1. Introduction. Weighted Lp inequalities for the Hardy-Littlewood maximal

function as well as for some singular integral operators are known to hold if and

only if the weight function w belongs to Muckenhoupt's class Ap [8, 2]. In [9], the

following question was raised: Find conditions on w(x) so that these operators are

bounded from Lp(w) to some other weighted space Lp(u). For the conjugate

function operator on the torus T, P. Koosis [6] has found that a necessary and

sufficient condition in the L2 case is w"1 £ L'(T). Here we shall extend this result

to Lp, where the condition becomes w~p'^p £ /'(T), and is the same for the

conjugate function as for the Hardy-Littlewood maximal operator. Moreover, all

this can be extended to R", where, in the Lp case, the weight w must verify

w-p'/p g ¡^ with an additional condition limiting the growth at infinity of w~p'^p.

2. Boundedness of the maximal function. Let M denote the Hardy-Littlewood

maximal operator in R"

Mf(x)= sup   ¿r/iyi
lEß     \\¿\ JQ

where Q is always a cube in R" and | • | denotes Lebesgue measure. We shall

consider in particular the cubes QR = {x £ R": max1<I<n|x,| < R }. L°(R") will be

the space of all measurable functions in R" provided with the topology of local

convergence in measure, i.e. Hhl£ = 0 (in L°) iff lim^x £ Q: |/}(x)| > A}| = 0

for every cube Q and every A > 0. We recall that a pair (v, w) of positive

measurable functions in R" belongs to the class A„, 1 < p < oo, when

7mÎfev)"Vçw*")'" < °°
and this condition is equivalent to the fact that M be bounded from Lp(w) to

weak-L^u) (see [9]).
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Theorem A. Given w(x) > 0 in R" and 1 <p < oo, the following conditions are

equivalent:

(a) There exists u(x) > 0 in R" such that M is bounded from Lp(w) to Lp(u).

(b) w-p'lp £ Li«, and lim sup^jQ^f ^(x^/" <& < »•

(c) There exists v(x) > 0 in R" smc/j í/iaí (u, w) G Ap.

(d) Affix) < oo a.e.for every f £ Lp(m>).

(e) M is a continuous operator from Lp(w) to L°(R").

Proof. It is obvious that (c) implies (b). If (b) holds, for every / £ Lp(w) we

have by Holder's inequality

Mp'
' 00

lim sup I a,!"'/"  |/|< H/IL^hmsuplO^rfr  *+A   ' <
R->oo JQR R->oo VQr I

and this is equivalent to Mf(x) < oo a.e. Thus (d) is obtained from (b). An

application of the Banach principle (see [4]) proves that (d) implies (e). Since M is

the maximal operator corresponding to a family of positive operators, it is a

consequence of Nikishin's theorem (see [5]) that (e) implies (c). Therefore, (b), (c),

(d) and (e) are equivalent, and (a) implies that (u, w) £ Ap. We only have to prove

that (a) follows from (b), which is the main point of the theorem. For each fixed

cube Q, we shall prove that there exists uQ(x) > 0 on Q such that

(1) ( (MffuQ < ( \f\»w       (f<EL»(w)).
Jq jk"

Once this is done, it suffices to take a partition of R" into a sequence (QJ) of

disjoint cubes, and then (a) is verified with u(x) = 2, 2~jUq(x)xq(x).

In order to prove (1), we take R > 1 such that Q c QR, and decompose each

/ £ Lp(w) as/ = /' + /", where/" = fxQlK and/' = / - /". Then, an elementary

geometric argument shows that, for every x £ Q

Mf'(x) < suplo,!"1 /   l/'l
h>R Qv,

< sup 2»\\f'\\L,(w)\Q2h\4(   *+»)  " < CR\\f'\\LP(w)
h>R \JQU J

so that we obtain

(2) f (Mf'f <\Q\CpRf |/Tw       (/ G L"(w)),

On the other hand, given scalars (a,) and functions (ff) such that supp(/y) c Q2R,

5\fjfw ^ L we use the /''-valued extension of the weak type (1,1) inequality for the

maximal operator due to Fefferman and Stein [3] to get

M* \ r      I VIP
*:(2I«,A^WI')   P>A  <APX~lfQ  (?Mr")   '' dx
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If q < 1, Kolmogorov's inequality relating the L* norm with the weak-L1 norm

implies

fQ{2 WM(X)\p)q/p dx < j^ier-^Kf.

According to Maurey's factorization theorem [7, Theorem 2], there exists a mea-

surable function g such that

r. r   Mh(x) " ( 1       1       1 \

for every function h supported in Q2R with ||â|[|«^ < 1. Thus

(3) [ (Mf"(x)J\ g(x)\-» dx <  f |/'T        (/ £ L"(w)).
Jq Jr»

From (2) and (3) we obtain (1) with uQ(x) = 21'p inf(|g(x)\~p, \Q\'XC^). Since

Uq/p £ LX(Q), and r/p = q/(p — q) increases top'/p as q —» 1, the last assertion

of the theorem also follows.

The dual question, i.e., finding conditions on u(x) so that M is bounded from

some Lp(w) to Lp(u), was also raised in [9]. A partial answer is contained in the

following.

Theorem B. Given u(x) > 0 in R" and 1 <p < oo, in order that there exists

w(x) < oo a.e. such that M is bounded from Lp(w) to Lp(u), it is

(i) necessary that u £ L^^andlim supR_^o0\QR\~l(f qku)í/p < oo,

(ii) sufficient that u £ L^ and, for some q <p, lim stapJj_>00|ßl|f"1(//, «)'/* < oo.

Proof. If M is bounded from Lp(w) to Lp(u), the pair («, w) belongs to Ap, and

part (i) follows easily. The proof of (ii) depends on the following fact which will be

obtained as a by-product of the results for singular integral operators:

[*] If u e Llx and lim supÄ_>JßÄ|-1(/&t/)1/i < oo, for every r>q>\ there

exists w(x) > 0 such that (u, w) £ Ar.

Using [*] with q < r <p we see that M is bounded from Lr(w) to weak-Lr(u),

and since it is bounded on L°° we only have to interpolate by the Marcinkiewicz

theorem.

3. Boundedness of singular integrals. By a singular integral operator (s.i.o.) in R"

we shall mean an operator of the form

Tf(x) = K */(x) = p.v. ¡K(y)f(x - y) ay

with the kernel K satisfying the conditions

(4) \K(x)\ < B,

(5) |*(x)| < Auxil-

ió)              \K(x -y)- K(x)\ < 5|| v||/||x||"+1   when || v|| < ||x||/2,
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where || • || stands for Euclidean norm in R". The least constant B for which (4), (5)

and (6) hold will be denoted by B(T). The simplest examples of such operators are

the Riesz transforms

M/I+lRjf =Kj*f,       Kj(x) = c„x,/||x|r '        (y = 1, 2,. . . , n)

where c„ = -u-(n+^2T((n + l)/2) (see [11]).

Theorem C. Given w(x) > 0 in R" and 1 <p < oo, the following conditions are

equivalent:

(a) There exists u(x) > 0 in R" such that, for every singular integral operator of the

type described above

f\ Tf(x)\pu(x) dx < B(T) f\f(x)\»w(x) dx       (f £ Lp(w)).

(b) w-p''p £ L/oc and\K.w(x)-p'lp(\ + \\x\\)-* dx < oo.

(c) The Riesz transforms are continuous operators from Lp(w) to L0(R").

Moreover, if any of these conditions hold and s <p'/p, u(x) can be obtained in (a)

such that u~s £ L,1^.

Proof, (a) implies (c). This is obvious because convergence in Lp(u) (with

w(x) > 0 everywhere in R") implies local convergence in measure. In fact, iffj —>0

(in Lp(u)) and mu denotes the measure dmu(x) = u(x) dx,

>"u({x--\fAx)\>*})<^\\fj\\U)^o

for every A > 0, and since u~x £ Ll(Q, mu) for every cube Q

\{x £ Q: \fj(x)\ > A}| = f u-1 dmu^0.

(c) implies (b). Since R = 2"_i Rj is continuous in measure in Lp(w), if we fix

our attention on the unit ball B = (x £ R": ||x|| < 1}, there exists \ > 0 big

enough so that

(7) |{x £ B: \Rg(x)\ > \0\\g\\L,{w)}\ < 2~"\B\

for all g E Lp(w). Let P = {x £ R": x, > 0, x2 > 0, . . ., x„ > 0} be the first

"quadrant" in R". If/ £ L"(w) and x £ (-P) n B,

\R(\/\Xp)(x)\ =   tcnf \f(y)\(xj - yj)\\x - vH—1 dy
j= i    jp

= Cnf\j\y)\\ S \x, - plW - y\r~X dy > cnf\f(y)\\\x - y\r dy

^ fixt    VI/1    ■    ll     ll\-"   J.

Since |(-P) n 5| = 2""|#|, (7) imphes

(8) cn f \f(y)\(l + \\y\\yn dy < XoWfxpWwj p
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By the same argument, (8) holds if we replace P by any other of the 2" "quadrants"

in R". Therefore

f I/OOIO + \\y\\rn dy < 2"/p'c-\\\f\\
JRn

L'(wy

By writing the integrand as I/OOIO + ll^ll)"^O) ^O) dy, we see that the func-

tion w(y)~\l + ||y\\y belongs to Lp(w). This proves (b).

(b) implies (a). Fix a cube Q and take R > 1 such that Q c {x: ||x|| < R}. As in

Theorem A, it will suffice to find a constant C > 0 and a function v(x) > 0 on Q

with v~s £ L\Q) (where s <p'/p is given) such that, for every s.i.o. T with

B(T) < 1, the following inequalities hold:

(9) [ \Tf(x)\pv(x) dx < ||/||£,(w)    whensupp(/) c {x: ||x|| < 2R},

(10) sup \Tf(x)\ < C\\f\\L,(w)    when supp(/) c {x: ||x|| > 2R).
xeQ

To prove (10) we take C -§(/w>, HyV^Wyf9' dy)x'p '. Then, if/is supported

in {x: ||x|| > 2R} and B(T) < 1, we have by (5) and (6)

sup |7/(x)| < sup f |/(7)| |*(x - y)\ dy
xeQ xSQJ\\y\i>2R

< sup f       |/0)l(IWI lb
x(EQJ\\y\\>2R

If
2/, IMI>2«

-«+ 1*001)4'

\Äy)\\\y\\-"dy<c\\f\\^w).

The proof of (9) depends on the vector valued inequalites for singular integrals due

to Benedek, Calderón and Panzone [1]. Given a sequence of s.i.o. (7J),° with

B(Tj) < 1, the operator T defined on /''-valued functions by T(fx,f2, ... ,jL • • • )

= (7i/i> T2f2, . . . , Tjfj,. . . ) satisfies the hypothesis of [1, Theorem 1], and there-

fore, it is of weak type (1, 1), i.e.

with A depending only on p (and not on the particular sequence of operators ( Tj),

provided that B(Tj) < 1). By the same argument as Theorem A (e.g. Kolmogorov's

inequality and Maurey's Theorem 2 of [7]) we obtain a function g £ Lr(Q), with

y <m± — I and q < 1 arbitrarily close to 1, such that }Q\h(x)/g(x)\p dx < 1 for any

function h in the family

§ = {7/1 rsio. with 5(7/) < 1, II/II^h,) < l,supp(/) c {x: ||x|| < 2R}}.

This proves (9) with v(x) = |g(x)|^\ and taking q so that r/p = q/(p — q) = s, it

follows that v~s £ Ll(Q).

Since every s.i.o. T is selfadjoint, T is bounded from Lp(w) to Lp(u) if and only

if it is bounded (with the same norm) from Lp'(u-p'/p) to Lp'(w-p'/p) (see [10] for the
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simple proof of this fact). Therefore, Theoerem C already gives us the complete

answer of the dual question for s.i.o.

Theorem D. Given u(x) > 0 in R" and 1 <p < oo, the following conditions are

equivalent:

(a) There exists w(x) < oo a.e. such that, for every singular integral operator of the

type considered here

f\Tf(x)\pu(x) dx < B(T)J\f(x)\pw(x) dx       (/ £ Lp(w)).

(b) u E Lie and /R. M(x)(l + 11*11)-* dx < oo.

(c) There exists w(x) < oo a.e. such that the Riesz transforms are bounded from

Lp(w) to Lp(u).

Moreover, given s < 1, w(x) in (a) and (c) can be obtained such that ws E L,1^.

At this point, the fact needed in the proof of Theorem B is easy to obtain.

Proof of [*]. We assume that u £ L,1«., M > 0 and h(t) = /m</k < Ct"9 (t >

\).ll q <r, by using polar coordinates and integration by parts

f u(x)(l + HxH)-* dx = f °°(1 + tymt"-x dt f        u(tx') do(x')
JR" J0 -'lljc'H = l

= Ch'(t)(\ + if4" dt = nrCh(t)(\ + tym~x dt < oo.

By Theorem D, there exists w(x) < oo a.e. such that the Riesz transforms are

bounded from Lr(w) to Lr(u), and this implies (u, w) £ Ar (see [2, 9]).

The proofs of Theorems A, B, C, D work also in the periodic case (and are even

simpler because there is no limitation at infinity for the weights). In particular, for

the torus T at [0, 1), if we denote by / the conjugate function of / E L1(T), we ask

for weights u(x), w(x) such that

(11) / \f\pu < I \f\pw   (/trigonometric polynomial)
J'Y J'y

Corollary, (i) Given w(x) > 0 in T and 1 <p < oo, (11) holds for some

u(x) > 0 if and only ifw~p/p E L1(T). In this case, and if s <p'/p is given, u can be

found such that u~s £ Ll(T).

(ii) Given u(x) > Oi/iT and 1 <p < oo, (11) holds for some w(x) < oo a.e. if and

only if u £ L,(T). In this case, and if s < 1 is given, w can be found such that

ws E L1(T).

For p = 2, (i) has been proved by P. Koosis [6], who obtains u(x) such that

log u E L1(T). The corollary is also true for the inequality (11) with Mf (maximal

function of / E LX(T)) instead of / (part (ii) is well known in this case; see

[3, Lemma 1]).
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Added in proof. L. Carleson and P. Jones have obtained essentially the same

results of Theorems A and C by a somewhat different method (Mittag-Leffler

Institute, Report No. 2, 1981).
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