BOUNDEDNESS OF MAXIMAL FUNCTIONS AND SINGULAR INTEGRALS IN WEIGHTED L^p SPACES

JOSÉ L. RUBIO DE FRANCIA

ABSTRACT. Given a weight w(x) > 0 in \mathbb{R}^n , necessary and sufficient conditions are found for the boundedness of the Hardy-Littlewood maximal function and singular integral operators from $L^p(w)$ to some other weighted L^p space. The dual question is also considered and partially answered.

- 1. Introduction. Weighted L^p inequalities for the Hardy-Littlewood maximal function as well as for some singular integral operators are known to hold if and only if the weight function w belongs to Muckenhoupt's class A_p [8, 2]. In [9], the following question was raised: Find conditions on w(x) so that these operators are bounded from $L^p(w)$ to some other weighted space $L^p(u)$. For the conjugate function operator on the torus T, P. Koosis [6] has found that a necessary and sufficient condition in the L^2 case is $w^{-1} \in L^1(T)$. Here we shall extend this result to L^p , where the condition becomes $w^{-p'/p} \in L^1(T)$, and is the same for the conjugate function as for the Hardy-Littlewood maximal operator. Moreover, all this can be extended to \mathbb{R}^n , where, in the L^p case, the weight w must verify $w^{-p'/p} \in L^1_{loc}$ with an additional condition limiting the growth at infinity of $w^{-p'/p}$.
- 2. Boundedness of the maximal function. Let M denote the Hardy-Littlewood maximal operator in \mathbb{R}^n

$$Mf(x) = \sup_{x \in O} \frac{1}{|Q|} \int_{O} |f|$$

where Q is always a cube in \mathbb{R}^n and $|\cdot|$ denotes Lebesgue measure. We shall consider in particular the cubes $Q_R = \{x \in \mathbb{R}^n : \max_{1 \le i \le n} |x_i| \le R \}$. $L^0(\mathbb{R}^n)$ will be the space of all measurable functions in \mathbb{R}^n provided with the topology of local convergence in measure, i.e. $\lim_j f_j = 0$ (in L^0) iff $\lim_j |\{x \in Q : |f_j(x)| > \lambda\}| = 0$ for every cube Q and every $\lambda > 0$. We recall that a pair (v, w) of positive measurable functions in \mathbb{R}^n belongs to the class A_p , 1 , when

$$\sup_{Q}|Q|^{-1}\bigg(\int_{Q}\upsilon\bigg)^{1/p}\bigg(\int_{Q}w^{-p'/p}\bigg)^{1/p'}<\infty$$

and this condition is equivalent to the fact that M be bounded from $L^p(w)$ to weak- $L^p(v)$ (see [9]).

Received by the editors December 19, 1980; presented to the Society, December 11, 1980. 1980 Mathematics Subject Classification. Primary 42B20, 42B25; Secondary 42A20, 42A50.

Key words and phrases. Hardy-Littlewood maximal function, singular integral, weighted norm inequalities.

THEOREM A. Given w(x) > 0 in \mathbb{R}^n and 1 , the following conditions are equivalent:

- (a) There exists u(x) > 0 in \mathbb{R}^n such that M is bounded from $L^p(w)$ to $L^p(u)$.
- (b) $w^{-p'/p} \in L^1_{loc}$ and $\limsup_{R \to \infty} |Q_R|^{-p'} \int_{Q_R} w(x)^{-p'/p} dx < \infty$.
- (c) There exists v(x) > 0 in \mathbb{R}^n such that $(v, w) \in A_p$.
- (d) $Mf(x) < \infty$ a.e. for every $f \in L^p(w)$.
- (e) M is a continuous operator from $L^p(w)$ to $L^0(\mathbb{R}^n)$.

PROOF. It is obvious that (c) implies (b). If (b) holds, for every $f \in L^p(w)$ we have by Hölder's inequality

$$\limsup_{R \to \infty} |Q_R|^{-1} \int_{Q_R} |f| \le ||f||_{L^{p(w)}} \limsup_{R \to \infty} |Q_R|^{-1} \left(\int_{Q_R} w^{-p'/p} \right)^{1/p'} < \infty$$

and this is equivalent to $Mf(x) < \infty$ a.e. Thus (d) is obtained from (b). An application of the Banach principle (see [4]) proves that (d) implies (e). Since M is the maximal operator corresponding to a family of positive operators, it is a consequence of Nikishin's theorem (see [5]) that (e) implies (c). Therefore, (b), (c), (d) and (e) are equivalent, and (a) implies that $(u, w) \in A_p$. We only have to prove that (a) follows from (b), which is the main point of the theorem. For each fixed cube Q, we shall prove that there exists $u_Q(x) > 0$ on Q such that

(1)
$$\int_{Q} (Mf)^{p} u_{Q} < \int_{\mathbb{R}^{n}} |f|^{p} w \qquad (f \in L^{p}(w)).$$

Once this is done, it suffices to take a partition of \mathbb{R}^n into a sequence (Q_j) of disjoint cubes, and then (a) is verified with $u(x) = \sum_j 2^{-j} u_Q(x) \chi_Q(x)$.

In order to prove (1), we take R > 1 such that $Q \subset Q_R$, and decompose each $f \in L^p(w)$ as f = f' + f'', where $f'' = f\chi_{Q_{2R}}$ and f' = f - f''. Then, an elementary geometric argument shows that, for every $x \in Q$

$$Mf'(x) \leq \sup_{h>R} |Q_h|^{-1} \int_{Q_{2h}} |f'|$$

$$\leq \sup_{h>R} 2^n ||f'||_{L^{p(w)}} |Q_{2h}|^{-1} \left(\int_{Q_{2h}} w^{-p'/p} \right)^{1/p'} \leq C_R ||f'||_{L^{p(w)}}$$

so that we obtain

(2)
$$\int_{Q} (Mf')^{p} \leq |Q| C_{R}^{p} \int_{\mathbb{R}^{n}} |f'|^{p} w \qquad (f \in L^{p}(w)),$$

On the other hand, given scalars (α_j) and functions (f_j) such that supp $(f_j) \subset Q_{2R}$, $\int |f_j|^p w < 1$, we use the l^p -valued extension of the weak type (1, 1) inequality for the maximal operator due to Fefferman and Stein [3] to get

$$\left| \left\{ x : \left(\sum_{j} |\alpha_{j} M f_{j}(x)|^{p} \right)^{1/p} > \lambda \right\} \right| \leq A_{p} \lambda^{-1} \int_{Q_{2R}} \left(\sum_{j} |\alpha_{j} f_{j}|^{p} \right)^{1/p} dx$$

$$\leq A_{p} \lambda^{-1} \left(\int \sum_{j} |\alpha_{j} f_{j}(x)|^{p} w(x) dx \right)^{1/p} \left(\int_{Q_{2R}} w^{-p'/p} \right)^{1/p'} \leq A_{R,p} \lambda^{-1} \left(\sum_{j} |\alpha_{j}|^{p} \right)^{1/p}.$$

If q < 1, Kolmogorov's inequality relating the L^q norm with the weak- L^1 norm implies

$$\int_{Q} \left(\sum_{j} |\alpha_{j} M f_{j}(x)|^{p} \right)^{q/p} dx \leq \frac{A_{R,p}}{1-q} |Q|^{1-q} \left(\sum_{j} |\alpha_{j}|^{p} \right)^{q/p}.$$

According to Maurey's factorization theorem [7, Theorem 2], there exists a measurable function g such that

$$\int_{Q} |g|^{r} < \infty, \qquad \int_{Q} \left| \frac{Mh(x)}{g(x)} \right|^{p} dx \le 1 \qquad \left(\frac{1}{r} = \frac{1}{q} - \frac{1}{p} \right)$$

for every function h supported in Q_{2R} with $||h||_{L^{p}(w)} \le 1$. Thus

(3)
$$\int_{Q} (Mf''(x))^{p} |g(x)|^{-p} dx \leq \int_{\mathbb{R}^{n}} |f''|^{p} \qquad (f \in L^{p}(w)).$$

From (2) and (3) we obtain (1) with $u_Q(x) = 2^{1-p} \inf(|g(x)|^{-p}, |Q|^{-1}C_R^{-p})$. Since $u_Q^{-r/p} \in L^1(Q)$, and r/p = q/(p-q) increases to p'/p as $q \to 1$, the last assertion of the theorem also follows.

The dual question, i.e., finding conditions on u(x) so that M is bounded from some $L^p(w)$ to $L^p(u)$, was also raised in [9]. A partial answer is contained in the following.

THEOREM B. Given u(x) > 0 in \mathbb{R}^n and $1 , in order that there exists <math>w(x) < \infty$ a.e. such that M is bounded from $L^p(w)$ to $L^p(u)$, it is

- (i) necessary that $u \in L^1_{loc}$ and $\limsup_{R\to\infty} |Q_R|^{-1} (\int_{Q_R} u)^{1/p} < \infty$,
- (ii) sufficient that $u \in L^1_{loc}$ and, for some q < p, $\limsup_{R \to \infty} |Q_R|^{-1} (\int_{Q_R} u)^{1/q} < \infty$.

PROOF. If M is bounded from $L^p(w)$ to $L^p(u)$, the pair (u, w) belongs to A_p , and part (i) follows easily. The proof of (ii) depends on the following fact which will be obtained as a by-product of the results for singular integral operators:

[*] If $u \in L^1_{loc}$ and $\limsup_{R \to \infty} |Q_R|^{-1} (\int_{Q_R} u)^{1/q} < \infty$, for every r > q > 1 there exists w(x) > 0 such that $(u, w) \in A_r$.

Using [*] with q < r < p we see that M is bounded from L'(w) to weak-L'(u), and since it is bounded on L^{∞} we only have to interpolate by the Marcinkiewicz theorem.

3. Boundedness of singular integrals. By a singular integral operator (s.i.o.) in \mathbb{R}^n we shall mean an operator of the form

$$Tf(x) = K * f(x) = \text{p.v.} \int K(y)f(x - y) dy$$

with the kernel K satisfying the conditions

$$|\hat{K}(x)| \leq B,$$

$$|K(x)| \le B||x||^{-n},$$

(6)
$$|K(x-y)-K(x)| \le B||y||/||x||^{n+1}$$
 when $||y|| < ||x||/2$,

where $\|\cdot\|$ stands for Euclidean norm in \mathbb{R}^n . The least constant B for which (4), (5) and (6) hold will be denoted by B(T). The simplest examples of such operators are the Riesz transforms

$$R_i f = K_i * f,$$
 $K_i(x) = c_n x_i / ||x||^{n+1}$ $(j = 1, 2, ..., n)$

where $c_n = \pi^{-(n+1)/2} \Gamma((n+1)/2)$ (see [11]).

THEOREM C. Given w(x) > 0 in \mathbb{R}^n and 1 , the following conditions are equivalent:

(a) There exists u(x) > 0 in \mathbb{R}^n such that, for every singular integral operator of the type described above

$$\int |Tf(x)|^p u(x) \ dx \leq B(T) \int |f(x)|^p w(x) \ dx \qquad (f \in L^p(w)).$$

- (b) $w^{-p'/p} \in L^1_{loc}$ and $\int_{\mathbb{R}^n} w(x)^{-p'/p} (1 + ||x||)^{-np'} dx < \infty$.
- (c) The Riesz transforms are continuous operators from $L^p(w)$ to $L^0(\mathbb{R}^n)$.

Moreover, if any of these conditions hold and s < p'/p, u(x) can be obtained in (a) such that $u^{-s} \in L^1_{loc}$.

PROOF. (a) implies (c). This is obvious because convergence in $L^p(u)$ (with u(x) > 0 everywhere in \mathbb{R}^n) implies local convergence in measure. In fact, if $f_j \to 0$ (in $L^p(u)$) and m_u denotes the measure $dm_u(x) = u(x) dx$,

$$m_{u}(\lbrace x: |f_{j}(x)| > \lambda \rbrace) \leq \lambda^{-p} ||f_{j}||_{L^{p}(u)}^{p} \rightarrow 0$$

for every $\lambda > 0$, and since $u^{-1} \in L^1(Q, m_u)$ for every cube Q

$$|\{x \in Q: |f_j(x)| > \lambda\}| = \int_{\{|f_j| > \lambda\} \cap Q} u^{-1} dm_u \to 0.$$

(c) implies (b). Since $R = \sum_{j=1}^{n} R_j$ is continuous in measure in $L^p(w)$, if we fix our attention on the unit ball $B = \{x \in R^n : ||x|| \le 1\}$, there exists $\lambda_0 > 0$ big enough so that

(7)
$$|\{x \in B: |Rg(x)| > \lambda_0 ||g||_{L^{p}(w)}\}| < 2^{-n}|B|$$

for all $g \in L^p(w)$. Let $P = \{x \in \mathbb{R}^n : x_1 > 0, x_2 > 0, \dots, x_n > 0\}$ be the first "quadrant" in \mathbb{R}^n . If $f \in L^p(w)$ and $x \in (-P) \cap B$,

$$|R(|f|\chi_{P})(x)| = \sum_{j=1}^{n} c_{n} \int_{P} |f(y)|(x_{j} - y_{j})||x - y||^{-n-1} dy$$

$$= c_{n} \int_{P} |f(y)| \left(\sum_{j=1}^{n} |x_{j} - y_{j}| \right) ||x - y||^{-n-1} dy > c_{n} \int_{P} |f(y)| ||x - y||^{-n} dy$$

$$> c_{n} \int_{P} |f(y)| (1 + ||y||)^{-n} dy.$$

Since $|(-P) \cap B| = 2^{-n}|B|$, (7) implies

(8)
$$c_n \int_{P} |f(y)| (1 + ||y||)^{-n} \, dy \le \lambda_0 ||f\chi_P||_{L^p(w)}.$$

By the same argument, (8) holds if we replace P by any other of the 2^n "quadrants" in \mathbb{R}^n . Therefore

$$\int_{\mathbb{R}^n} |f(y)| (1 + ||y||)^{-n} dy \le 2^{n/p'} c_n^{-1} \lambda_0 ||f||_{L^p(w)}.$$

By writing the integrand as $|f(y)|(1 + ||y||)^{-n}w(y)^{-1}w(y) dy$, we see that the function $w(y)^{-1}(1 + ||y||)^{-n}$ belongs to $L^{p'}(w)$. This proves (b).

(b) implies (a). Fix a cube Q and take R > 1 such that $Q \subset \{x: ||x|| \le R\}$. As in Theorem A, it will suffice to find a constant C > 0 and a function v(x) > 0 on Q with $v^{-s} \in L^1(Q)$ (where s < p'/p is given) such that, for every s.i.o. T with $B(T) \le 1$, the following inequalities hold:

To prove (10) we take $C = \frac{3}{2} (\int_{\|y\| > 1} w(y)^{-p'/p} \|y\|^{-np'} dy)^{1/p'}$. Then, if f is supported in $\{x: \|x\| \ge 2R\}$ and $B(T) \le 1$, we have by (5) and (6)

$$\sup_{x \in Q} |Tf(x)| \le \sup_{x \in Q} \int_{\|y\| > 2R} |f(y)| |K(x - y)| dy$$

$$\le \sup_{x \in Q} \int_{\|y\| > 2R} |f(y)| (\|x\| \|y\|^{-n-1} + |K(y)|) dy$$

$$\le \frac{3}{2} \int_{\|y\| > 2R} |f(y)| \|y\|^{-n} dy \le C \|f\|_{L^{p}(w)}.$$

The proof of (9) depends on the vector valued inequalites for singular integrals due to Benedek, Calderón and Panzone [1]. Given a sequence of s.i.o. $(T_j)_1^{\infty}$ with $B(T_j) \leq 1$, the operator \tilde{T} defined on l^p -valued functions by $\tilde{T}(f_1, f_2, \ldots, f_j, \cdots) = (T_1 f_1, T_2 f_2, \ldots, T_j f_j, \ldots)$ satisfies the hypothesis of [1, Theorem 1], and therefore, it is of weak type (1, 1), i.e.

$$\left|\left\{x \in \mathbb{R}^n : \left(\sum_j |T_j f_j(x)|^p\right)^{1/p} > \lambda\right\}\right| \le A_p \lambda^{-1} \left\|\left(\sum_j |f_j|^p\right)^{1/p}\right\|_1$$

with A_p depending only on p (and not on the particular sequence of operators (T_j) , provided that $B(T_j) \le 1$). By the same argument as Theorem A (e.g. Kolmogorov's inequality and Maurey's Theorem 2 of [7]) we obtain a function $g \in L'(Q)$, with $\frac{1}{r} = \frac{1}{q} - \frac{1}{p}$ and q < 1 arbitrarily close to 1, such that $\int_Q |h(x)/g(x)|^p dx \le 1$ for any function h in the family

$$\mathcal{F} = \big\{ Tf | T \text{ s.i.o. with } B(T) \leq 1, \|f\|_{L^p(w)} \leq 1, \operatorname{supp}(f) \subset \big\{ x \colon \|x\| \leq 2R \big\} \big\}.$$

This proves (9) with $v(x) = |g(x)|^{-p}$, and taking q so that r/p = q/(p-q) = s, it follows that $v^{-s} \in L^1(Q)$.

Since every s.i.o. T is selfadjoint, T is bounded from $L^p(w)$ to $L^p(u)$ if and only if it is bounded (with the same norm) from $L^{p'}(u^{-p'/p})$ to $L^{p'}(w^{-p'/p})$ (see [10] for the

simple proof of this fact). Therefore, Theoerem C already gives us the complete answer of the dual question for s.i.o.

THEOREM D. Given u(x) > 0 in \mathbb{R}^n and 1 , the following conditions are equivalent:

(a) There exists $w(x) < \infty$ a.e. such that, for every singular integral operator of the type considered here

$$\int |Tf(x)|^p u(x) \ dx \leqslant B(T) \int |f(x)|^p w(x) \ dx \qquad (f \in L^p(w)).$$

- (b) $u \in L^1_{loc}$ and $\int_{\mathbb{R}^n} u(x)(1 + ||x||)^{-np} dx < \infty$.
- (c) There exists $w(x) < \infty$ a.e. such that the Riesz transforms are bounded from $L^p(w)$ to $L^p(u)$.

Moreover, given s < 1, w(x) in (a) and (c) can be obtained such that $w^s \in L^1_{loc}$.

At this point, the fact needed in the proof of Theorem B is easy to obtain.

PROOF OF [*]. We assume that $u \in L^1_{loc}$, u > 0 and $h(t) = \int_{\|x\| \le t} u \le Ct^{nq}$ (t > 1). If q < r, by using polar coordinates and integration by parts

$$\int_{\mathbb{R}^n} u(x)(1+||x||)^{-nr} dx = \int_0^\infty (1+t)^{-nr} t^{n-1} dt \int_{||x'||=1} u(tx') d\sigma(x')$$
$$= \int_0^\infty h'(t)(1+t)^{-nr} dt = nr \int_0^\infty h(t)(1+t)^{-nr-1} dt < \infty.$$

By Theorem D, there exists $w(x) < \infty$ a.e. such that the Riesz transforms are bounded from L'(w) to L'(u), and this implies $(u, w) \in A_r$ (see [2, 9]).

The proofs of Theorems A, B, C, D work also in the periodic case (and are even simpler because there is no limitation at infinity for the weights). In particular, for the torus $T \cong [0, 1)$, if we denote by \tilde{f} the conjugate function of $f \in L^1(T)$, we ask for weights u(x), w(x) such that

(11)
$$\int_{\mathbf{T}} |\tilde{f}|^p u \le \int_{\mathbf{T}} |f|^p w \quad (f \text{ trigonometric polynomial})$$

COROLLARY. (i) Given w(x) > 0 in T and 1 , (11) holds for some <math>u(x) > 0 if and only if $w^{-p'/p} \in L^1(T)$. In this case, and if s < p'/p is given, u can be found such that $u^{-s} \in L^1(T)$.

(ii) Given u(x) > 0 in T and $1 , (11) holds for some <math>w(x) < \infty$ a.e. if and only if $u \in L^1(T)$. In this case, and if s < 1 is given, w can be found such that $w^s \in L^1(T)$.

For p = 2, (i) has been proved by P. Koosis [6], who obtains u(x) such that $\log u \in L^1(T)$. The corollary is also true for the inequality (11) with Mf (maximal function of $f \in L^1(T)$) instead of \tilde{f} (part (ii) is well known in this case; see [3, Lemma 1]).

ACKNOWLEDGEMENT. I wish to express my thanks to G. Pisier for an enlightening discussion about factorization theorems while this paper was in preparation. I also thank the referee for his criticism and helpful suggestions.

ADDED IN PROOF. L. Carleson and P. Jones have obtained essentially the same results of Theorems A and C by a somewhat different method (Mittag-Leffler Institute, Report No. 2, 1981).

REFERENCES

- 1. A. Benedek, A. P. Calderon and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356-365.
- 2. R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250.
 - 3. C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 1 (1971), 107-115.
 - 4. A. M. Garsia, Topics in almost everywhere convergence, Markham, Chicago, Ill., 1970.
- 5. J. E. Gilbert, Nikishin-Stein theory and factorization with applications, Proc. Sympos. Pure Math., vol. 35, part 2, Amer. Math. Soc., Providence, R. I., 1979, pp. 233-267.
- 6. P. Koosis, Moyennes quadratiques pondérées de fonctions périodiques et de leurs conjuguées harmoniques, C. R. Acad. Sci. Paris Sér. A 291 (1980), 255-257.
- 7. B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L^p , Astérisque, no. 11, Soc. Math. de France, 1974.
- 8. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
- 9. _____, Weighted norm inequalities for classical operators, Proc. Sympos. Pure Math., vol. 35, part 1, Amer. Math. Soc., Providence, R. I., 1979, pp. 69-83.
- 10. J. L. Rubio de Francia, Vector valued inequalities for operators in L^p spaces, Bull. London Math. Soc. 12 (1980), 211-215.
- 11. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1980.

FACULTAD DE CIENCIAS, UNIVERSITY OF ZARAGOZA, ZARAGOZA, SPAIN