CONTINUITY OF BEST APPROXIMANTS

D. LANDERS AND L. ROGGE

ABSTRACT. Let C_n , $n \in \mathbb{N}$, be Φ -closed lattices in an Orlicz-space $L_{\Phi}(\Omega, \mathcal{C}, \mu)$ and assume that C_n increases or decreases to a Φ -closed lattice C_{∞} . Let f_n , $n \in \mathbb{N}$, be \mathcal{C} -measurable real valued functions with $f_n \to f$ μ -a.e. and $\sup |f_n| \in L_{\Phi}$. If g_n is a best Φ -approximant of f_n in C_n it is shown that $\lim_{n \in \mathbb{N}} g_n$ and $\overline{\lim}_{n \in \mathbb{N}} g_n$ are best Φ -approximants of f in C_{∞} .

1. Introduction and notations. Let $(\Omega, \mathcal{C}, \mu)$ be a measure space and $\Phi \colon \mathbf{R}_+ \to \mathbf{R}_+$ be a convex function with $\Phi(0) = 0$ and $\Phi \not\equiv 0$. Denote by $L_{\Phi}(\Omega, \mathcal{C}, \mu)$ respectively $L_{\Phi}^{\infty}(\Omega, \mathcal{C}, \mu)$ the system of all μ -equivalence classes of \mathcal{C} -measurable functions f such that $\int \Phi(\alpha|f|) d\mu < \infty$ for some $\alpha > 0$ respectively for all $\alpha > 0$. L_{Φ} and L_{Φ}^{∞} are linear spaces with $L_{\Phi}^{\infty} \subset L_{\Phi}$; if $\Phi(x) = x^P$ then $L_{\Phi} = L_{\Phi}^{\infty}$ and we obtain the spaces L_p , $p \geqslant 1$. If $C \subset L_{\Phi}$ and $f \in L_{\Phi}$ denote by $\mu_{\Phi}(f|C)$ the system of all $g \in C$ fulfilling

$$\int \Phi(|f-g|) \ d\mu = \inf_{h \in C} \int \Phi(|f-h|) \ d\mu.$$

The elements of $\mu_{\Phi}(f|C)$ are called best Φ -approximants of f, given C. The concept of best Φ -approximants, given C, covers and unifies many important concepts of probability theory, e.g. the concepts in [1], [2], [6]; for more details see [4]. It is known that $\mu_{\Phi}(f|C) \neq \emptyset$ if C is a lattice (i.e. $f, g \in C$ implies $f \land g, f \lor g \in C$) which is Φ -closed (i.e. $f_n \in C$, $f \in L_{\Phi}$ and $f_n \uparrow f$ or $f_n \downarrow f$ imply $f \in C$); see Theorem 4 of [4]. In general, $\mu_{\Phi}(f|C)$ contains a lot of different elements; for instance if $\Phi(x) = x$ or if C is not convex. This creates problems for proving limit theorems for best Φ -approximants. In special cases—i.e. for $\Phi(x) = x^p$, p > 1, and special types of C-limit results for best Φ -approximants of f, given C, are easier to obtain for varying f than for varying C; but in all these cases best approximants are unique. In the general context, however, the case of varying f is more complex. There exist limit theorems for best Φ -approximants of martingale type (see Theorem 21 and Theorem 22 of [4])—i.e. limit theorems for $g_n \in \mu_{\Phi}(f|C_n)$ with varying C_n -but there exist no continuity theorems for best Φ -approximants-i.e. limit theorems for $g_n \in \mu_{\Phi}(f_n|C)$ with varying f_n . It is the aim of this paper to close this gap. We prove a limit theorem for best Φ -approximants $g_n \in \mu_{\Phi}(f_n|C_n)$ where as well the functions f_n as the Φ -closed lattices C_n may vary with $n \in \mathbb{N}$. We apply this result to obtain continuity of best approximants in the Orlicz-space norm of L_{Φ} .

Received by the editors October 24, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46E30; Secondary 41A50.

Key words and phrases. Best approximants, σ -lattices, conditional expectations, characterization.

- 2. The results. Throughout the following let $(\Omega, \mathcal{Q}, \mu)$ be a measure space and Φ : $\mathbb{R}_+ \to \mathbb{R}_+$ be a convex function with $\Phi(0) = 0$ and $\Phi \neq 0$. Then Φ is a continuous function with $\lim_{t \to \infty} \Phi(t) = \infty$. If $C_n \subset L_{\Phi}$, $n \in \mathbb{N} \cup \{\infty\}$, we write $C_n \downarrow C_{\infty}$ if $C_n \supset C_{n+1}$, $n \in \mathbb{N}$, and $C_{\infty} = \bigcap_{n \in \mathbb{N}} C_n$. If C_n are Φ -closed lattices we write $C_n \uparrow C_{\infty}$ if $C_n \subset C_{n+1}$ and C_{∞} is the smallest Φ -closed set containing $\bigcup_{n \in \mathbb{N}} C_n$; then C_{∞} is a lattice, too (see [4, p. 229]).
- 1. THEOREM. Assume that $L_{\Phi} = L_{\Phi}^{\infty}$. Let $C_n \subset L_{\Phi}$, $n \in \mathbb{N}$, be Φ -closed lattices with $C_n \downarrow C_{\infty}$ or $C_n \uparrow C_{\infty}$ and $f_n \in L_{\Phi}$, $n \in \mathbb{N}$, with $f_n \to f$ μ -a.e. and $\sup_{n \in \mathbb{N}} |f_n| \in L_{\Phi}$. Then for all $g_n \in \mu_{\Phi}(f_n|C_n)$, $n \in \mathbb{N}$,
 - (i) $\lim_{n \in \mathbb{N}} g_n \in \mu_{\Phi}(f|C_{\infty})$, $\overline{\lim}_{n \in \mathbb{N}} g_n \in \mu_{\Phi}(f|C_{\infty})$.
 - (ii) $\sup_{n\in\mathbb{N}} |g_n| \in L_{\Phi}$.

PROOF. Let $C_n \downarrow C_{\infty}$. We prove that for each $g \in \mu_{\Phi}(f|C_{\infty})$

(1)
$$g \wedge \underline{\lim}_{n \in \mathbb{N}} g_n \in \mu_{\Phi}(f|C_{\infty}), \quad g \vee \overline{\lim}_{n \in \mathbb{N}} g_n \in \mu_{\Phi}(f|C_{\infty}).$$

As

$$\underline{\lim_{n \in \mathbb{N}}} g_n = \left(g \vee \overline{\lim_{n \in \mathbb{N}}} g_n \right) \wedge \underline{\lim_{n \in \mathbb{N}}} g_n$$

and

$$\overline{\lim}_{n \in \mathbb{N}} g_n = \left(g \wedge \underline{\lim}_{n \in \mathbb{N}} g_n \right) \vee \overline{\lim}_{n \in \mathbb{N}} g_n,$$

(1) implies (i).

Applying Lemma 3 to $C_k \supset \cdots \supset C_n \supset C_{\infty}$ we obtain for n > k

(2)
$$\int \Phi(|f_k \wedge \cdots \wedge f_n \wedge f - g_k \wedge \cdots \wedge g_n \wedge g|) d\mu$$
$$< \int \Phi(|f_k \wedge \cdots \wedge f_n \wedge f - g|) d\mu$$

and

(3)
$$\int \Phi(|f_k \vee \cdots \vee f_n \vee f - g_k \vee \cdots \vee g_n \vee g|) d\mu < \int \Phi(|f_k \vee \cdots \vee f_n \vee f - g|) d\mu.$$

From (2) we obtain for each k with $n \to \infty$ according to the Lemma of Fatou that

$$\int \Phi\left(\left|f \wedge \bigwedge_{n>k} f_n - g \wedge \bigwedge_{n>k} g_n\right|\right) d\mu$$

$$\leq \lim_{n \in \mathbb{N}} \int \Phi(\left|f_k \wedge \cdots \wedge f_n \wedge f - g\right|) d\mu.$$

Since $\sup_{n\in\mathbb{N}} |f_n| \in L_{\Phi}$ by assumption, (4) implies by the Theorem of Lebesgue that for each $k\in\mathbb{N}$

$$(5) \qquad \int \Phi\left(\left|f \wedge \bigwedge_{n \geq k} f_n - g \wedge \bigwedge_{n \geq k} g_n\right|\right) d\mu \leqslant \int \Phi\left(\left|f \wedge \bigwedge_{n \geq k} f_n - g\right|\right) d\mu < \infty.$$

As $f_n \to f$, $\sup_{n \in \mathbb{N}} |f_n| \in L_{\Phi}$ we obtain from (5) with $k \to \infty$ using on the left side the Lemma of Fatou and on the right side the Theorem of Lebesgue that

(6)
$$\int \Phi\left(\left|f-g \wedge \lim_{n \in \mathbb{N}} g_n\right|\right) d\mu < \int \Phi(|f-g|) d\mu < \infty.$$

From (5) we obtain that $g \wedge \bigwedge_{n>k} g_n \in L_{\Phi}$. As $g \wedge \bigwedge_{n>k} g_n \leq \bigwedge_{n>k} g_n \leq g_k$ this implies

$$\bigwedge_{n>k} g_n \in L_{\Phi}$$

In the same way as (6) and (7) we obtain

(6)*
$$\int \Phi\left(\left|f-g\vee\overline{\lim}_{n\in\mathbb{N}}g_{n}\right|\right)d\mu \leqslant \int \Phi(\left|f-g\right|)d\mu < \infty$$

and

$$(7)^* \qquad \bigvee_{n > k} g_n \in L_{\Phi}.$$

From (7) and (7)* applied to k=1 we obtain (ii). As $C_n \downarrow$ are Φ -closed lattices we obtain with (7) that $\bigwedge_{n \geqslant j} g_n \in C_k$ for $j \geqslant k$. As $\underline{\lim}_{n \in \mathbb{N}} g_n \in L_{\Phi}$ by (ii), this $\underline{\lim}_{n \in \mathbb{N}} g_n \in C_k$ for each $k \in \mathbb{N}$ and hence $\underline{\lim}_{n \in \mathbb{N}} g_n \in C_{\infty}$. Similarly $\underline{\lim}_{n \in \mathbb{N}} g_n \in C_{\infty}$. Now (6), (6)* and $g \in C_{\infty}$ imply (1). This finishes the proof for the decreasing case.

Now let $C_n \uparrow C_{\infty}$. Applying Lemma 3 with $C_n \supset C_{n-1} \supset \cdots \supset C_k$, k < n, we obtain for k < n

$$\int \Phi(|f_k \wedge \cdots \wedge f_n - g_k \wedge \cdots \wedge g_n|) \ d\mu \leq \int \Phi(|f_k \wedge \cdots \wedge f_n - g_k|) \ d\mu.$$

Proceeding now as in the decreasing case, i.e. letting at first $n \to \infty$ and then $k \to \infty$ and using on the left sides the Lemma of Fatou and on the right sides the Theorem of Lebesgue we obtain

and

(9)
$$\int \Phi\left(\left|f - \lim_{n \in \mathbb{N}} g_n\right|\right) d\mu < \lim_{k \in \mathbb{N}} \int \Phi\left(\left|\bigwedge_{n > k} f_n - g_k\right|\right) d\mu.$$

In the same way we obtain

$$(8)^* \qquad \qquad \bigvee_{n \geq k} g_n \in L_{\Phi}, \qquad k \in \mathbb{N},$$

and

$$(9)^* \qquad \int \Phi\left(\left|f - \overline{\lim}_{n \in \mathbb{N}} g_n\right|\right) d\mu < \underline{\lim}_{k \in \mathbb{N}} \int \Phi\left(\left|\bigvee_{n \geq k} f_n - g_k\right|\right) d\mu < \infty.$$

Relations (8) and (8*) directly imply

(10)
$$\sup_{n \in \mathbb{N}} |g_n| \in L_{\Phi} \quad \text{and} \quad \lim_{n \in \mathbb{N}} g_n, \quad \overline{\lim}_{n \in \mathbb{N}} g_n \in C_{\infty}.$$

Now apply Lemma 4 to $h_k = |f_k - g_k|$ and $r_k := |\bigwedge_{n > k} f_n - f_k|$. Since $\sup_{k \in \mathbb{N}} |g_k| \in L_{\Phi}$ by (10), $\sup_{k \in \mathbb{N}} |f_k| \in L_{\Phi}$ and $f_k \to f$ μ -a.e. by assumption we have $\sup_{k \in \mathbb{N}} h_k$, $\sup_{k \in \mathbb{N}} r_k \in L_{\Phi}$ and $r_k \to 0$ μ -a.e., i.e. the assumptions of Lemma 4 are fulfilled. Hence we obtain

(11)
$$\lim_{k \in \mathbb{N}} \int \Phi(h_k + r_k) d\mu = \lim_{k \in \mathbb{N}} \int \Phi(h_k) d\mu.$$

Since

$$\Phi\left(\left|\bigwedge_{n>k}f_n-g_k\right|\right)\leqslant\Phi\left(\left|f_k-g_k\right|+\left|\bigwedge_{n>k}f_n-f_k\right|\right)=\Phi(h_k+r_k),$$

(9) and (11) imply

(12)
$$\int \Phi\left(\left|f - \lim_{n \in \mathbb{N}} g_n\right|\right) d\mu \leq \lim_{k \in \mathbb{N}} \int \Phi(\left|f_k - g_k\right|) d\mu.$$

According to (12) and (10) we get $\underline{\lim}_{n\in\mathbb{N}} g_n \in \mu_{\Phi}(f|C_{\infty})$ if we show that for all $g\in C_{\infty}$

(13)
$$\lim_{k \in \mathbb{N}} \int \Phi(|f_k - g_k|) d\mu \leq \int \Phi(|f - g|) d\mu.$$

Let \hat{C} be the set of all $g \in L_{\Phi}$ fulfilling (13). Since $g_k \in \mu_{\Phi}(f_k|C_k)$, $C_k \uparrow$, $f_k \to f$ μ -a.e. and $\sup_{n \in \mathbb{N}} |f_n| \in L_{\Phi}$ it is easy to see that \hat{C} is Φ -closed with $\bigcup_{n \in \mathbb{N}} C_n \subset \hat{C}$. Hence $C_{\infty} \subset \hat{C}$, i.e. (13) holds for all $g \in \hat{C}$. Thus $\lim_{n \in \mathbb{N}} g_n \in \mu_{\Phi}(f|C_{\infty})$ is shown; the proof for $\lim_{n \in \mathbb{N}} g_n \in \mu_{\Phi}(f|C_{\infty})$ runs similarly (by using (9*) instead of (9)).

The martingale results, given in [4], hold for more general functions Φ than convex functions, namely for so-called μ -functions. We do not know whether also the preceding theorem is true for this more general concept; the proof of Theorem 1 heavily uses the convexity of Φ . Approximating $\lim_{n\in\mathbb{N}}g_n$ μ -a.e. by g_{τ_n} where τ_n is a sequence of finite stopping times for g_n , $n\in\mathbb{N}$, it can be seen that Theorem 1 is true for μ -functions in the special case that C_n is the system of \mathcal{C}_n -measurable functions in L_{Φ} , where $\mathcal{C}_n \subset \mathcal{C}$ are σ -fields, and $\mathcal{C}_n \uparrow \mathcal{C}_{\infty}$ or $\mathcal{C}_n \downarrow \mathcal{C}_{\infty}$. However, this procedure fails for arbitrary Φ -closed lattices C_n .

If $f \in L_{\Phi}$ put $||f||_{\Phi} := \inf\{a > 0: \int \Phi(|f|/a) d\mu \le 1\}$. Then $||\cdot|_{\Phi}$ is a norm on L_{Φ} and the spaces $(L_{\Phi}, ||\cdot|_{\Phi})$ are Banach-spaces; the well-known Orlicz spaces (see [5, p. 46]). If $C \subset L_{\Phi}$ and $f \in L_{\Phi}$ we denote by $\mu_{||\cdot||}(f|C)$ the set of all best $||\cdot|_{\Phi}$ -approximants of f, given C, i.e. the set of all elements $g \in C$ with

$$||f - g||_{\Phi} = \inf\{||f - h||_{\Phi}: h \in C\}.$$

The concept of best $\| \|_{\Phi}$ -approximants and its connection with the concept of best Φ -approximants has been investigated in [4]. If Φ is strictly convex and if $L_{\Phi} = L_{\Phi}^{\infty}$, then for each Φ -closed convex lattice $C \subset L_{\Phi}$ and each $f \in L_{\Phi}$ there exist a unique best Φ -approximant and a unique best $\| \|_{\Phi}$ -approximant of f, given C (see Corollary 5 and Corollary 13 of [4]), we denote these unique elements by $\mu_{\Phi}(f|C)$

and $\mu_{\parallel \parallel}(f|C)$, respectively. Hence $L_{\Phi} \ni f \to \mu_{\Phi}(f|C) \in L_{\Phi}$ and $L_{\Phi} \ni f \to \mu_{\parallel \parallel}(f|C) \in L_{\Phi}$ are operators on L_{Φ} and the following result states the $\parallel \parallel_{\Phi}$ -continuity of these operators.

2. COROLLARY. Let Φ be strictly convex and assume that $L_{\Phi} = L_{\Phi}^{\infty}$. Let $C \subset L_{\Phi}$ be a Φ -closed convex lattice and a cone. Then $\mu_{\Phi}(\cdot|C)$ and $\mu_{\parallel \parallel}(\cdot|C)$ are $\|\cdot\|_{\Phi}$ -continuous operators on L_{Φ} .

PROOF. As $L_{\Phi} = L_{\Phi}^{\infty}$ let us at first remark that

(1)
$$||h_n||_{\Phi} \to 0 \text{ iff } \int \Phi(a|h_n|) \ d\mu \to 0 \text{ for all } a > 0.$$

Let now $||f_n - f_0||_{\Phi} \to_{n \in \mathbb{N}} 0$ and $\mathbb{N}_1 \subset \mathbb{N}$ be a subsequence. It suffices to prove that there exists a subsequence $\mathbb{N}_2 \subset \mathbb{N}_1$ such that

(2)
$$\|\mu_{\Phi}(f_n|C) - \mu_{\Phi}(f_0|C)\|_{\Phi} \underset{n \in \mathbb{N}_2}{\to} 0,$$

(3)
$$\|\mu_{\|\|}(f_n|C) - \mu_{\|\|}(f_0|C)\|_{\Phi} \underset{n \in \mathbb{N}_2}{\longrightarrow} 0.$$

Since $||f_n - f_0||_{\Phi} \to_{n \in \mathbb{N}_1} 0$ there exists a subsequence $\mathbb{N}_2 \subset \mathbb{N}_1$ such that

$$(4) f_n \underset{n \in \mathbb{N}}{\to} f_0 \quad \mu\text{-a.e.}$$

and

$$\sum_{n\in\mathbb{N}_2}\|f_n-f_0\|_{\Phi}<\infty.$$

From (5) and $L_{\Phi} = L_{\Phi}^{\infty}$ we obtain

(6)
$$\sup_{n \in \mathbb{N}_2} |f_n| < |f_0| + \sum_{n \in \mathbb{N}_2} |f_n - f_0| \in L_{\Phi}.$$

Now (4), (6) and Theorem 1 imply

(7)
$$\mu_{\Phi}(f_n|C) \underset{n \in \mathbb{N}_2}{\longrightarrow} \mu_{\Phi}(f_0|C) \quad \mu\text{-a.e.}; \quad \sup_{n \in \mathbb{N}_2} |\mu_{\Phi}(f_n|C)| \in L_{\Phi}.$$

Using (1), $L_{\Phi} = L_{\Phi}^{\infty}$ and the Theorem of Lebesgue, (7) implies (2). It remains to prove (3). Since $||f_n - f_0||_{\Phi} \to 0$ and C is $|| ||_{\Phi}$ -closed (see Theorem 10 of [4]) it is easy to see that

(8)
$$\delta_n := \|f_n - \mu_{\|}\|(f_n|C)\|_{\Phi} \underset{n \in \mathbb{N}}{\to} \|f_0 - \mu_{\|}\|(f_0|C)\|_{\Phi} =: \delta_0.$$

Let w.l.g. $\delta_0 > 0$; hence w.l.g. $\delta_n > 0$ for all $n \in \mathbb{N}$. According to Corollary 8 of [4] we have, as C is a cone, that

(9)
$$\mu_{\parallel \parallel}(f_n|C) = \delta_n \mu_{\Phi}\left(\frac{1}{\delta_n}f_n|C\right), \quad n \in \mathbb{N} \cup \{0\}.$$

Since $f_n \to_{\parallel \parallel_{\mathbf{0}}} f_0$, and $\delta_n \to \delta_0$ by (8), we have

$$\frac{1}{\delta_n}f_n \underset{\| \| \Phi}{\rightarrow} \frac{1}{\delta_0}f_0.$$

Hence the continuity of $\mu_{\Phi}(\cdot|C)$ implies

$$\left\|\mu_{\Phi}\left(\frac{1}{\delta_n}f_n|C\right) - \mu_{\Phi}\left(\frac{1}{\delta_0}f_0|C\right)\right\|_{\Phi} \underset{n \in \mathbb{N}}{\longrightarrow} 0.$$

Together with (9) and (8) this yields (3).

For the special case that C is the system of measurable functions with respect to a σ -field the assertion of Corollary 2 follows from Satz 5.10 of [3]. The methods used there are closely related to this special type of C and cannot be transferred to arbitrary Φ -closed convex lattices.

The following lemmas are the main tools for the proof of Theorem 1.

3. Lemma. Assume that $L_{\Phi} = L_{\Phi}^{\infty}$. Let $C_i \subset L_{\Phi}$, $i = 1, \ldots, n$, be Φ -closed lattices with $C_1 \supset C_2 \supset \cdots \supset C_n$. If $f_i \in L_{\Phi}$ and $g_i \in \mu_{\Phi}(f_i|C_i)$, $i = 1, \ldots, n$ then

(i)
$$\int \Phi(|f_1 \wedge \cdots \wedge f_n - g_1 \wedge \cdots \wedge g_n|) d\mu \leq \int \Phi(|f_1 \wedge \cdots \wedge f_n - g_n|) d\mu$$
,

(ii)
$$\int \Phi(|f_1 \vee \cdots \vee f_n - g_1 \vee \cdots \vee g_n|) d\mu \leq \int \Phi(|f_1 \vee \cdots \vee f_n - g_n|) d\mu$$
.

PROOF. To show (i) it suffices to prove that for j < n

$$\int \Phi(|f_1 \wedge \cdots \wedge f_n - g_j \wedge \cdots \wedge g_n|) d\mu$$

$$\leq \int \Phi(|f_1 \wedge \cdots \wedge f_n - g_{j+1} \wedge \cdots \wedge g_n|) d\mu.$$

As Φ is convex, Lemma 20 of [4] implies

$$(2) \qquad \Phi(|f_1 \wedge \cdots \wedge f_n - g_j \wedge (g_{j+1} \wedge \cdots \wedge g_n)|) \\ + \Phi(|f_j - g_j \vee (g_{j+1} \wedge \cdots \wedge g_n)|) \\ \leq \Phi(|f_1 \wedge \cdots \wedge f_n - g_{j+1} \wedge \cdots \wedge g_n|) + \Phi(|f_j - g_j|).$$

Since C_j is a lattice and $g_i \in C_i \subset C_j$ for i > j we have $g_j \lor (g_{j+1} \land \cdots \land g_n) \in C_j$. As $g_i \in \mu_{\Phi}(f_i|C_i)$ we obtain

(3)
$$\int \Phi(|f_j - g_j|) d\mu \leq \int \Phi(|f_j - g_j \vee (g_{j+1} \wedge \cdots \wedge g_n)|) d\mu.$$

Using (3) integration of (2) yields (1). This proves (i); the proof for (ii) runs by interchanging \bigvee and \bigwedge .

4. Lemma. Assume that $L_{\Phi} = L_{\Phi}^{\infty}$. Let $0 \le h_k$, $r_k \in L_{\Phi}$ and assume that $\sup_{k \in \mathbb{N}} h_k$, $\sup_{k \in \mathbb{N}} r_k \in L_{\Phi}$ and $r_k \to 0$ μ -a.e. Then

$$\int \Phi(h_k + r_k) \ d\mu - \int \Phi(h_k) \ d\mu \underset{k \in \mathbb{N}}{\longrightarrow} 0.$$

PROOF. Let Φ'_+ be the right derivative of Φ . Then Φ'_+ is nondecreasing and $\Phi(x) = \int_0^x \Phi'_+(t) dt$ (see e.g. [5]). Hence for all $k \in \mathbb{N}$

$$(*) \quad \Phi(h_k + r_k) - \Phi(h_k) = \int_{h_k}^{h_k + r_k} \Phi'_+(t) \, dt < r_k \Phi'_+(h_k + r_k) < r \Phi'_+(h + r)$$

with $r := \sup_{k \in \mathbb{N}} r_k \in L_{\Phi}$ and $h := \sup_{k \in \mathbb{N}} h_k \in L_{\Phi}$.

By the Theorem of Lebesgue (*) directly implies the assertion if we show $r\Phi'_+(h+r) \in L_1$. As $0 \le x\Phi'_+(x) \le \int_x^{2x} \Phi'_+(t) \, dt \le \Phi(2x)$ and $L_{\Phi} = L_{\Phi}^{\infty}$ we have $g\Phi'_+(g) \in L_1$ if $0 \le g \in L_{\Phi}$. Applying this to $g = h + r \in L_{\Phi}$ we obtain $r\Phi'_+(h+r) \in L_1$.

REFERENCES

- 1. T. Ando and L. Amemiya, Almost everywhere convergence of prediction sequences in L_p (1 < p < ∞), Z. Wahrsch. Verw. Gebiete 4 (1965), 113–120.
- 2. H. D. Brunk, Uniform inequalities for conditional p-means given σ-lattices, Ann. Probab. 3 (1975), 1025-1030.
- 3. N. Herrndorf, Beste Φ und N_{Φ} -Approximanten in Orlicz-Räumen vektorwertiger Funktionen, Thesis, Köln, 1980.
- D. Landers and L. Rogge, Best approximants in L_Φ-spaces, Z. Wahrsch. Verw. Gebiete 51 (1980), 215-237.
 - 5. W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces, North-Holland, Amsterdam-London, 1971.
- 6. T. Shintani and T. Ando, Best approximants in L₁-space, Z. Wahrsch. Verw. Gebiete 33 (1975), 33-39

MATHEMATISCHES INSTITUT DER UNIVERSITÄT KÖLN, WEYERTAL 86-90, D-5000 KÖLN 41, WEST GERMANY

Universität-Gesamthochschule-Duisburg, Fachbereich 11 – Mathematik – Lotharstrasse 65, 4100 Duisburg 1, West Germany