CONVERGENCE OF BEST BEST L_{∞} -APPROXIMATIONS

ABDALLAH M. AL-RASHED AND RICHARD B. DARST

ABSTRACT. Let $(\Omega, \mathcal{C}, \mu)$ be a probability space and let $\{\mathfrak{B}_i\}_{i=1}^{\infty}$ be an increasing sequence of subsigma algebras of \mathcal{C} . Let $A = L_{\infty}(\Omega, \mathcal{C}, \mu)$, let $B_i = L_{\infty}(\Omega, \mathfrak{B}_i, \mu)$, i > 1, and let $f \in A$. Let f_i denote the best best L_{∞} -approximation to f by elements of B_i . It is shown that $\lim_{i \to \infty} f_i(x)$ exists a.e.

We begin with a brief introduction in which we present notation and terminology, a related result [1] for $1 , and some results from [2] that will be used to establish a.e. convergence of the sequence <math>\{f_i\}$.

Let \mathfrak{B}_{∞} denote the subsigma algebra generated by the algebra $\bigcup_{i} \mathfrak{B}_{i}$. For $1 , <math>1 \le i \le \infty$ and $g \in L_{p}(\Omega, \mathfrak{A}, \mu)$, let $g_{i,p}$ denote the best L_{p} -approximation to g by elements of $L_{p}(\Omega, \mathfrak{B}_{i}, \mu)$; T. Ando and I. Amemiya [1] showed that $\lim_{i} g_{i,p} = g_{\infty,p}$ a.e. and in L_{p} . It is shown in [2] that if $g \in A$, then for $1 \le i \le \infty$, $\lim_{p} g_{i,p}$ exists a.e. and is the best best L_{∞} -approximation, $g_{i,\infty}$, to g by \mathfrak{B}_{i} -measurable functions. To simplify the notation, we let f be a fixed element of A and, without loss of generality, we suppose that $0 \le f \le 1$; furthermore, we denote $f_{i,\infty}$ by f_{i} . Our proof of the fact that the sequence $\{f_{i}\}$ converges a.e. uses some technical results from [2] that we introduce next. To simplify the notation during this introduction, suppress i from \mathfrak{B}_{i} : \mathfrak{B} is a subsigma algebra of \mathfrak{A} and $B = L_{\infty}(\Omega, \mathfrak{B}, \mu)$.

Let \mathfrak{P} denote the set of denumerable partitions of Ω by elements of \mathfrak{B} .

For $E \in \mathcal{C}$, let O(E) denote the essential oscillation of f on E: O(E) = O(f, E) = essup(f, E) - essinf(f, E), where essup (f, E) = essinf(f, E) = 0 if $\mu(E)$ = 0 and for $\mu(E) > 0$

$$u(E) = \text{essup}(f, E) = \inf\{\lambda; \mu(\{x \in E; f(x) > \mu\}) = 0\}$$

and

$$l(E) = \operatorname{essinf}(f, E) = \sup\{\lambda; \, \mu(\{x \in E; f(x) < \lambda\}) = 0\}.$$

Let d(g, B) denote the distance from an element g of A to the subspace B of A.

Next we recall two lemmas from [2]. Lemma 1 shows that \mathcal{P} can be used to estimate d(f, B). Lemma 2 asserts that the flexibility afforded by \mathcal{P} permits us to replace an inf by a min. The partitions corresponding to each min provide an equivalence class of elements of \mathfrak{B} . These equivalence classes comprise a monotone family parameterized by the positive reals.

Received by the editors January 11, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 28A20, 41A50, 46E30.

Key words and phrases. Best approximation, L_{∞} .

LEMMA 1. $d = d(f, B) = (1/2) \inf_{\pi \in \mathcal{P}} \sup \{ O(E); E \in \pi, \mu(E) > 0 \}.$

LEMMA 2. For h > 0 and $\pi \in \mathcal{P}$, let $\delta(h, \pi) = \{ \sum \mu(E); E \in \pi, O(E) > h \}$ and let $\delta_h = \inf \{ \delta(h, \pi); \pi \in \mathcal{P} \}$. Then there exists π such that $\delta_h = \delta(h, \pi) = \mu(E_\pi^h)$, where $E_\pi^h = \bigcup \{ E; E \in \pi, O(E) > h \}$.

Lemmas 1 and 2 assure (i) $\delta_h = 0$ if h > 2d and (ii) if h < 2d, then there exists $\pi \in \mathcal{P}$ such that $\delta(h, \pi) = \delta_h > 0$. Notice also that if $\delta(h, \pi) = \delta_h$, $E \in \mathcal{B}$, $E \subset E_{\pi}^h$ and $\mu(E) > 0$, then O(E) > h; thus, E_{π}^h is uniquely determined up to a set of measure zero by the equation $\delta(h, \pi) = \delta_h$, so we can denote it by E_h . Now observe that if $h_1 < h_2$, then $\mu(E_{h_2} - E_{h_2}) = 0$.

Let $m(E) = (1/2)(l(E) + u(E)), E \in \mathcal{C}, \mu(E) > 0.$

The proof of the fourth lemma in [2] implies a lemma that we record for future use.

LEMMA 3. Let $h > 2\gamma > 0$, let $E(h, \gamma) = E_h - E_{h+\gamma} = \{ \bigcup_j F_j; F_j \in \mathfrak{B}, 0 < \mu(F_j), h \leq O(F_j) < h + \gamma \}$, and let \hat{f} denote the best best L_{∞} approximation to f by elements of B. Then $\mu(\{x \in F_i; |\hat{f}(x) - m(F_i)| > \gamma/2\}) = 0$; for almost all points $x \in F_i, |\hat{f}(x) - m(F_i)| \leq \gamma/2$.

Now we are ready to show that $\{f_i\}$ converges a.e. To this end, let $0 < \varepsilon < 1$. Let $\gamma > 0$ with $4\gamma < \varepsilon$ and let M be the smallest positive integer for which $\varepsilon + M\gamma > 1$. Reintroduce the index i to the notation (e.g. for \mathfrak{B}_i , E_h becomes $E_{i,h}$). Notice that $E_{i,h} \supset E_{j,h}$, $i \le j$, h > 0. For h > 0, let $E_h = \bigcap_i E_{i,h}$ and let $D_{i,h} = E_{i,h} - E_h$. Let $\eta > 0$ satisfy the inequality $2\eta(M+1) < \varepsilon$, and let n be a positive integer such that $\mu(D_{n,\varepsilon+k\gamma}) < \eta$, $k = 0, 1, \ldots, M$. Let $D_n = \bigcup_{k=0}^M D_{n,\varepsilon+k\gamma}$, and let $G_n = E_{n,\varepsilon} - D_n$. Then $\{\Omega - E_{n,\varepsilon}, G_n, D_n\}$ is a partition of Ω . Lemma 1 and Theorem 2 of [2] imply that $|f_i - f| < \varepsilon/2$ on $(\Omega - E_{i,\varepsilon}) \supset (\Omega - E_{n,\varepsilon})$, i > n. Notice that $\mu(D_n) < \varepsilon$. If we show that, for i > n, $|f_i - f_n| < \varepsilon/2$ on G_n , then we will have shown that for each $\varepsilon > 0$ there is a set $D = D_n$ and a positive integer n = 1 such that $\mu(D_n) < \varepsilon$ and $|f_i(x) - f_j(x)| < \varepsilon$, i, j > n, $i \ne n$; since this latter situation is equivalent to a.e. convergence of the sequence $\{f_i\}$ we will be done. So, let $S_{i,k} = (E_{i,\varepsilon+k\gamma} - E_{i,\varepsilon+(k+1)\gamma})$. For $n \le j \le i$, $(S_{j,k} - S_{i,k}) \subset (E_{n,\varepsilon+k\gamma} - E_{\varepsilon+k\gamma})$ because $E_{i,h} \supset E_{i,h}$, h > 0. Now observe that

$$E_{n,\varepsilon} = \bigcup_{k=0}^{M} S_{n,k} = G_{n,i} \cup H_{n,i},$$

where $G_{n,i} = \bigcup_{k=0}^{M} (S_{n,k} - S_{i,k}) \subset D_n$ and $H_{n,i} = \bigcup_{k=0}^{M} (S_{n,k} \cap S_{i,k}) \supset G_n$. Since $H_{n,i} \supset G_n$, it suffices to show that $|f_n - f_i| < \varepsilon/2$ on $H_{n,i}$, i > n, as follows. Fix k to simplify the notation and let $h = \varepsilon + k\gamma$. Then

$$S_{n,k} = \bigcup_{l} \{F_{n,l}; \mu(F_{n,l}) > 0, F_{n,l} \in \mathfrak{B}_n, h \leq O(F_{n,l}) < h + \gamma \},$$

and

$$S_{i,k} = \bigcup_{m} \big\{ F_{i,m}; \, \mu(F_{i,m}) > 0, \, F_{i,m} \in \mathfrak{B}_m, \, h \leq O(F_{i,m}) < h + \gamma \big\}.$$

So $S_{n,k} \cap S_{i,k} = \bigcup_{l,m} (F_{n,l} \cap F_{i,m})$. Fix i, l, m and let H denote $F_{n,l} \cap F_{i,m}$. Observe that $H \in \mathfrak{B}_i$. Suppose $\mu(H) > 0$; then $h \leq O(H) \leq \max\{O(F_{n,l}), O(F_{i,m})\} < h + \gamma$ because $H \subset E_{i,h}$. A computation verifies that $|m(F_{n,l}) - m(F_{i,m})| < \gamma/2$. Finally we apply Lemma 3 and obtain $|f_n(x) - f_i(x)| \leq |f_n(x) - m(F_{n,l})| + |m(F_{n,l}) - m(F_{i,m})| + |m(F_{i,m}) - f_i(x)| < 2\gamma < \varepsilon/2$ for $x \in H$. Thus, the following theorem is established.

THEOREM. Let $f \in A$. Then the sequence $\{f_i\}$ of best best L_{∞} -approximations to f is bounded by $||f||_{\infty}$ and converges a.e.

We conclude with an example to illustrate the fact that $\{f_n\}$ need not converge to f_{∞} .

EXAMPLE. Let $\Omega=[0,1)$, $\mathcal C$ be the Borel sets in Ω , μ denote Lebesgue measure, and let $\mathcal B_n$ be generated by $\{[(i-1)/2^n,i/2^n);\ 1\leqslant i\leqslant 2^n\}$. Let E be a countable union of closed subsets of Ω such that if $0\leqslant u\leqslant v\leqslant 1$, then both E and $\Omega-E$ intersect (u,v) in a set of positive measure (cf. [3, p. 59]). Let f be the indicator function I_E of E (i.e., f(x)=1 if $x\in E$ and f(x)=0 if $x\in \Omega-E$). Then $f=f_\infty$; but $f_n\equiv 1/2,\ n=1,2,\ldots$

REFERENCES

- 1. T. Ando and I. Amemiya, Almost everywhere convergence of prediction sequence in L_p (1 , Z. Wahrsch. Verw. Gebiete 4 (1965), 113–120.
 - 2. R. B. Darst, Convergence of L_n approximations as $p \to \infty$, Proc. Amer. Math. Soc. (to appear).
 - 3. Walter Rudin, Real and complex analysis, 2nd ed., McGraw-Hill, New York, 1974.

DEPARTMENT OF MATHEMATICS, COLORADO STATE UNIVERSITY, FORT COLLINS, COLORADO 80523 (Current address of R. B. Darst)

Current address (A. M. Al-Rashed): Department of Mathematics, College of Science, Riyadh University, Riyadh, Saudi Arabia