CONVERGENCE OF BEST BEST L_{∞}-APPROXIMATIONS

ABDALLAH M. AL-RASHED AND RICHARD B. DARST

Abstract

Let $(\Omega ; \mathcal{Q}, \mu)$ be a probability space and let $\left\{\mathscr{B}_{i}\right\}_{i=1}^{\infty}$ be an increasing sequence of subsigma algebras of \mathbb{Q}. Let $A=L_{\infty}(\Omega, \mathcal{Q}, \mu)$, let $B_{i}=L_{\infty}\left(\Omega, \mathscr{B}_{i}, \mu\right)$, $i>1$, and let $f \in A$. Let f_{i} denote the best best L_{∞}-approximation to f by elements of B_{i}. It is shown that $\lim _{i} f_{i}(x)$ exists a.e.

We begin with a brief introduction in which we present notation and terminology, a related result [1] for $1<p<\infty$, and some results from [2] that will be used to establish a.e. convergence of the sequence $\left\{f_{i}\right\}$.

Let \mathscr{B}_{∞} denote the subsigma algebra generated by the algebra $\cup_{i} \mathscr{B}_{i}$. For $1<p<\infty, 1 \leqslant i \leqslant \infty$ and $g \in L_{p}(\Omega, \mathcal{Q}, \mu)$, let $g_{i, p}$ denote the best L_{p}-approximation to g by elements of $L_{p}\left(\Omega, B_{i}, \mu\right)$; T. Ando and I. Amemiya [1] showed that $\lim _{i} g_{i, p}=g_{\infty, p}$ a.e. and in L_{p}. It is shown in [2] that if $g \in A$, then for $1 \leqslant i \leqslant \infty$, $\lim _{p} g_{i, p}$ exists a.e. and is the best best L_{∞}-approximation, $g_{i, \infty}$, to g by \mathscr{B}_{i}-measurable functions. To simplify the notation, we let f be a fixed element of A and, without loss of generality, we suppose that $0 \leqslant f \leqslant 1$; furthermore, we denote $f_{i, \infty}$ by f_{i}. Our proof of the fact that the sequence $\left\{f_{i}\right\}$ converges a.e. uses some technical results from [2] that we introduce next. To simplify the notation during this introduction, suppress i from $\mathscr{B}_{i}: \mathscr{B}$ is a subsigma algebra of \mathcal{Q} and $B=L_{\infty}(\Omega, \mathfrak{B}, \mu)$.

Let \mathscr{P} denote the set of denumerable partitions of Ω by elements of \mathscr{B}.
For $E \in \mathcal{Q}$, let $O(E)$ denote the essential oscillation of f on $E: O(E)=O(f, E)$ $=\operatorname{essup}(f, E)-\operatorname{essinf}(f, E)$, where $\operatorname{essup}(f, E)=\operatorname{essinf}(f, E)=0$ if $\mu(E)=0$ and for $\mu(E)>0$

$$
u(E)=\operatorname{essup}(f, E)=\inf \{\lambda ; \mu(\{x \in E ; f(x)>\mu\})=0\}
$$

and

$$
l(E)=\operatorname{essinf}(f, E)=\sup \{\lambda ; \mu(\{x \in E ; f(x)<\lambda\})=0\} .
$$

Let $d(g, B)$ denote the distance from an element g of A to the subspace B of A.
Next we recall two lemmas from [2]. Lemma 1 shows that \mathscr{P} can be used to estimate $d(f, B)$. Lemma 2 asserts that the flexibility afforded by \mathscr{P} permits us to replace an inf by a min. The partitions corresponding to each min provide an equivalence class of elements of \mathfrak{B}. These equivalence classes comprise a monotone family parameterized by the positive reals.

[^0]Lemma 1. $d=d(f, B)=(1 / 2) \inf _{\pi \in \mathscr{P}} \sup \{O(E) ; E \in \pi, \mu(E)>0\}$.
Lemma 2. For $h>0$ and $\pi \in \mathscr{P}$, let $\delta(h, \pi)=\{\Sigma \mu(E) ; E \in \pi, O(E) \geqslant h\}$ and let $\delta_{h}=\inf \{\delta(h, \pi) ; \pi \in \mathscr{P}\}$. Then there exists π such that $\delta_{h}=\delta(h, \pi)=\mu\left(E_{\pi}^{h}\right)$, where $E_{\pi}^{h}=\cup\{E ; E \in \pi, O(E) \geqslant h\}$.

Lemmas 1 and 2 assure (i) $\delta_{h}=0$ if $h>2 d$ and (ii) if $h<2 d$, then there exists $\pi \in \mathscr{P}$ such that $\delta(h, \pi)=\delta_{h}>0$. Notice also that if $\delta(h, \pi)=\delta_{h}, E \in \mathscr{B}$, $E \subset E_{\pi}^{h}$ and $\mu(E)>0$, then $O(E) \geqslant h$; thus, E_{π}^{h} is uniquely determined up to a set of measure zero by the equation $\delta(h, \pi)=\delta_{h}$, so we can denote it by E_{h}. Now observe that if $h_{1}<h_{2}$, then $\mu\left(E_{h_{2}}-E_{h_{1}}\right)=0$.

Let $m(E)=(1 / 2)(l(E)+u(E)), E \in \mathcal{Q}, \mu(E)>0$.
The proof of the fourth lemma in [2] implies a lemma that we record for future use.

Lemma 3. Let $h>2 \gamma>0$, let $E(h, \gamma)=E_{h}-E_{h+\gamma}=\left\{\cup_{j} F_{j} ; F_{j} \in \mathscr{B}, 0<\right.$ $\left.\mu\left(F_{j}\right), h \leqslant O\left(F_{j}\right)<h+\gamma\right\}$, and let \hat{f} denote the best best L_{∞} approximation to f by elements of B. Then $\mu\left(\left\{x \in F_{i} ;\left|\hat{f}(x)-m\left(F_{i}\right)\right|>\gamma / 2\right\}\right)=0$; for almost all points $x \in F_{i},\left|\hat{f}(x)-m\left(F_{i}\right)\right| \leqslant \gamma / 2$.

Now we are ready to show that $\left\{f_{i}\right\}$ converges a.e. To this end, let $0<\varepsilon<1$. Let $\gamma>0$ with $4 \gamma<\varepsilon$ and let M be the smallest positive integer for which $\varepsilon+M \gamma \geqslant 1$. Reintroduce the index i to the notation (e.g. for \mathscr{B}_{i}, E_{h} becomes $E_{i, h}$). Notice that $E_{i, h} \supset E_{j, h}, i \leqslant j, h>0$. For $h>0$, let $E_{h}=\cap_{i} E_{i, h}$ and let $D_{i, h}=E_{i, h}$ - E_{h}. Let $\eta>0$ satisfy the inequality $2 \eta(M+1)<\varepsilon$, and let n be a positive integer such that $\mu\left(D_{n, \varepsilon+k \gamma}\right)<\eta, k=0,1, \ldots, M$. Let $D_{n}=\cup_{k=0}^{M} D_{n, e+k \gamma}$, and let $G_{n}=E_{n, e}-D_{n}$. Then $\left\{\Omega-E_{n, e}, G_{n}, D_{n}\right\}$ is a partition of Ω. Lemma 1 and Theorem 2 of [2] imply that $\left|f_{i}-f\right|<\varepsilon / 2$ on $\left(\Omega-E_{i, e}\right) \supset\left(\Omega-E_{n, e}\right), i \geqslant n$. Notice that $\mu\left(D_{n}\right)<\varepsilon$. If we show that, for $i \geqslant n,\left|f_{i}-f_{n}\right|<\varepsilon / 2$ on G_{n}, then we will have shown that for each $\varepsilon>0$ there is a set $D=D_{n}$ and a positive integer n such that $\mu(D)<\varepsilon$ and $\left|f_{i}(x)-f_{j}(x)\right|<\varepsilon, i, j \geqslant n, x \notin D$; since this latter situation is equivalent to a.e. convergence of the sequence $\left\{f_{i}\right\}$ we will be done. So, let $S_{i, k}=\left(E_{i, \varepsilon+k \gamma}-E_{i, \varepsilon+(k+1) \gamma}\right)$. For $n \leqslant j \leqslant i,\left(S_{j, k}-S_{i, k}\right) \subset\left(E_{n, \varepsilon+k \gamma}-E_{\varepsilon+k \gamma}\right)$ because $E_{j, h} \supset E_{i, h}, h>0$. Now observe that

$$
E_{n, \varepsilon}=\bigcup_{k=0}^{M} S_{n, k}=G_{n, i} \cup H_{n, i},
$$

where $G_{n, i}=\cup_{k=0}^{M}\left(S_{n, k}-S_{i, k}\right) \subset D_{n}$ and $H_{n, i}=\cup_{k=0}^{M}\left(S_{n, k} \cap S_{i, k}\right) \supset G_{n}$. Since $H_{n, i} \supset G_{n}$, it suffices to show that $\left|f_{n}-f_{i}\right|<\varepsilon / 2$ on $H_{n, i}, i>n$, as follows. Fix k to simplify the notation and let $h=\varepsilon+k \gamma$. Then

$$
S_{n, k}=\bigcup_{l}\left\{F_{n, l} ; \mu\left(F_{n, l}\right)>0, F_{n, l} \in \mathscr{B}_{n}, h \leqslant O\left(F_{n, l}\right)<h+\gamma\right\}
$$

and

$$
S_{i, k}=\bigcup_{m}\left\{F_{i, m} ; \mu\left(F_{i, m}\right)>0, F_{i, m} \in \mathscr{B}_{m}, h \leqslant O\left(F_{i, m}\right)<h+\gamma\right\} .
$$

So $S_{n, k} \cap S_{i, k}=\cup_{l, m}\left(F_{n, l} \cap F_{i, m}\right)$. Fix i, l, m and let H denote $F_{n, l} \cap F_{i, m}$. Observe that $H \in \mathscr{B}_{i}$. Suppose $\mu(H)>0$; then $h \leqslant O(H) \leqslant \max \left\{O\left(F_{n, l}\right), O\left(F_{i, m}\right)\right\}<h+$ γ because $H \subset E_{i, h}$. A computation verifies that $\left|m\left(F_{n, l}\right)-m\left(F_{i, m}\right)\right|<\gamma / 2$. Finally we apply Lemma 3 and obtain $\left|f_{n}(x)-f_{i}(x)\right| \leqslant\left|f_{n}(x)-m\left(F_{n, l}\right)\right|+\mid m\left(F_{n, l}\right)-$ $m\left(F_{i, m}\right)\left|+\left|m\left(F_{i, m}\right)-f_{i}(x)\right|<2 \gamma<\varepsilon / 2\right.$ for $x \in H$. Thus, the following theorem is established.

Theorem. Let $f \in A$. Then the sequence $\left\{f_{i}\right\}$ of best best L_{∞}-approximations to f is bounded by $\|f\|_{\infty}$ and converges a.e.

We conclude with an example to illustrate the fact that $\left\{f_{n}\right\}$ need not converge to f_{∞}.

Example. Let $\Omega=[0,1), \mathcal{Q}$ be the Borel sets in Ω, μ denote Lebesgue measure, and let \mathscr{B}_{n} be generated by $\left\{\left[(i-1) / 2^{n}, i / 2^{n}\right) ; 1 \leqslant i \leqslant 2^{n}\right\}$. Let E be a countable union of closed subsets of Ω such that if $0<u<v<1$, then both E and $\Omega-E$ intersect (u, v) in a set of positive measure (cf. [3, p. 59]). Let f be the indicator function I_{E} of E (i.e., $f(x)=1$ if $x \in E$ and $f(x)=0$ if $x \in \Omega-E$). Then $f=f_{\infty}$; but $f_{n} \equiv 1 / 2, n=1,2, \ldots$.

References

1. T. Ando and I. Amemiya, Almost everywhere convergence of prediction sequence in $L_{p}(1<p<\infty)$, Z. Wahrsch. Verw. Gebiete 4 (1965), 113-120.
2. R. B. Darst, Convergence of L_{p} approximations as $p \rightarrow \infty$, Proc. Amer. Math. Soc. (to appear).
3. Walter Rudin, Real and complex analysis, 2nd ed., McGraw-Hill, New York, 1974.

Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523 (Current address of R. B. Darst)

Current address (A. M. Al-Rashed): Department of Mathematics, College of Science, Riyadh University, Riyadh, Saudi Arabia

[^0]: Received by the editors January 11, 1981.
 1980 Mathematics Subject Classification. Primary 28A20, 41A50, 46E30.
 Key words and phrases. Best approximation, L_{∞}.

