L_0 IS ω -TRANSITIVE

N. T. PECK AND T. STARBIRD

ABSTRACT. Let L_0 be the space of measurable functions on the unit interval. Let F and G be two subspaces of L_0 , each isomorphic to the space of all sequences. It is proved that there is a linear homeomorphism of L_0 onto itself which takes F onto G. A corollary of this is a lifting theorem for operators into L_0/F , where F is a subspace of L_0 isomorphic to the space of all sequences.

Let L_0 denote the space of all measurable functions on [0, 1] with the topology of convergence in measure. In [1] it was proved that if F and G are finite-dimensional subspaces of L_0 of the same finite dimension, then there is an isomorphism (linear homeomorphism) of L_0 onto itself which takes F onto G. In this note we prove this result when F and G are isomorphic to ω , the space of all sequences.

THEOREM. Let F and G be subspaces of L_0 which are isomorphic to ω . Then there is an isomorphism of L_0 onto itself taking F onto G.

We give a corollary and then prove the theorem. Recall that an F-space X has L_0 -structure if, for each $\varepsilon > 0$, X can be written as a topological direct sum $X = \bigoplus_{i=1}^n X_i$ where each X_i is a subspace of X and the diameter of X_i is less than ε , for each i (see [1]).

COROLLARY. Let F be a subspace of L_0 which is isomorphic to ω . Let X be an F-space with L_0 -structure, and let T be a linear operator from X into L_0/F . Then there is a unique linear operator \tilde{T} from X to L_0 such that $T=\pi \tilde{T}$, where π is the canonical quotient map from L_0 onto L_0/F . (\tilde{T} is said to be a lifting of T.)

PROOF OF THE COROLLARY FROM THE THEOREM. We first give some notation and describe a special setting of the corollary which will be useful in the proof of the theorem.

If f is in L_0 , we denote by [f] the one-dimensional space spanned by f. The support of f will be denoted by supp f. If A is a measurable subset of [0, 1], we denote by $L_0(A)$ the subset of L_0 consisting of all f such that supp $f \subset A$. As usual, functions equal almost everywhere are identified, and relations between sets are stated modulo sets of measure zero.

Suppose that (f_i) is a sequence of nonzero elements of L_0 such that the sets $S_i = \text{supp } f_i$ are pairwise disjoint. Let $F = \overline{\text{span}(f_i)}$. It is clear that on F, the

Received by the editors November 21, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46E30, 46A22.

Key words and phrases. Space of measurable functions, subspace isomorphic to ω , transitivity of operators, lifting of linear operator, functions with disjoint supports.

^{© 1981} American Mathematical Society 0002-9939/81/0000-0557/\$02.25

 L_0 -topology is equivalent to the topology of convergence in measure on each S_i ; hence F is isomorphic to ω . We call a copy of ω obtained in this way a *disjoint* copy of ω .

Keeping the previous notation, we suppose that $F = \overline{\operatorname{span}(f_i)}$ is a disjoint copy of ω . Then if $B = \bigcup_i \operatorname{supp} f_i$ and if $C = [0, 1] \sim B$, we have that L_0/F is the topological product $L_0(C) \oplus \prod_{i=1}^{\infty} L_0(\operatorname{supp} f_i)/[f_i]$, canonically. Suppose $T: X \to L_0/F$ is a linear operator. Let q_i be the quotient map of L_0/F onto $L_0(\operatorname{supp} f_i)/[f_i]$, for each i. By [1, Theorem 3.6], for each i there is a map $\tilde{T}_i: X \to L_0(\operatorname{supp} f_i)$ which is a lifting of the map $q_i T$. Then the map $\chi_C T \oplus \prod_i \tilde{T}_i$ is a lifting of T, as required. The uniqueness of \tilde{T} follows immediately: if T_1 is another lifting of T, then $\tilde{T} - T_1$ maps into the locally convex space F, and so must be identically zero.

Now suppose G is any isomorph of ω in L_0 . We have shown that the conclusion of the corollary holds for L_0/F , above. By the theorem, there is an isomorphism of L_0 onto itself which takes F onto G; hence the corollary holds in general.

PROOF OF THE THEOREM.

LEMMA 1. Let $F = \overline{\operatorname{span}(f_i)}$ and $G = \overline{\operatorname{span}(g_i)}$ be two disjoint copies of ω in L_0 . Then there is an isomorphism of L_0 onto itself which takes F onto G.

PROOF. Let $A = [0, 1] \sim \bigcup_{i=1}^{\infty} \operatorname{supp} f_i$ and let $B = [0, 1] \sim \bigcup_{i=1}^{\infty} \operatorname{supp} g_i$. Let $C = A \cup \operatorname{supp} f_1$ and let $D = B \cup \operatorname{supp} g_1$. By [1, Proposition 2.2] there is an isomorphism T_1 of $L_0(C)$ onto $L_0(D)$ taking f_1 onto g_1 . For the same reason, if $i \ge 2$ there is an isomorphism T_i of $L_0(\operatorname{supp} f_i)$ onto $L_0(\operatorname{supp} g_i)$ taking f_i onto g_i . Putting these isomorphisms together in the obvious way yields the result. Q.E.D.

We next consider an intermediate case (the linearly independent case):

Let (e_j) be a sequence in L_0 equivalent to the natural basis of ω . In addition, assume that there is a partition (B_i) of \bigcup_i supp e_j such that for each i,

$$N_i = \{ j \in N : (\text{supp } e_j) \cap B_i \neq \emptyset \}$$

is a finite set, and the set of restrictions $\{e_j|_{B_i}: j \in N_i\}$ is a linearly independent set. By [1, Proposition 2.2], for each i, there is an isomorphism T_i of $L_0(B_i)$ onto itself taking the functions $\{e_i|_{B_i}: j \in N_i\}$ onto disjointly supported functions.

Then the maps T_i obviously induce an isomorphism of $L_0(\bigcup_i \text{ supp } e_i)$ onto itself taking the e_i 's onto disjointly supported functions. This completes the proof in this case, since it has been reduced to the disjoint case.

Turning now to the general case, let (e_i) be a sequence equivalent to the natural basis of ω , with no additional assumptions. We will prove: there is a basis $(\tilde{e_i})$ of $\overline{\text{span}(e_i)}$ and a sequence (B_i) of pairwise disjoint measurable sets satisfying

- (i) each \tilde{e}_i is a finite linear combination of the e_i 's;
- (ii) for each i, the set $N_i = \{j \in N : \text{supp } \tilde{e}_j \cap B_i \neq \emptyset\}$ is a finite set;
- (iii) for each i, the set of restrictions $\{\tilde{e}_i|_{B_i}: j \in N_i\}$ is linearly independent;
- (iv) $\bigcup_i B_i = \bigcup_i \operatorname{supp} \tilde{e}_i$.

Once this has been proved, the argument for the linearly independent case can be applied to the sequences (\tilde{e}_i) and (B_i) and the proof of the theorem will be complete.

We next single out an important property of arbitrary isomorphs of ω in L_0 .

LEMMA 2. Let E be a subspace of L_0 isomorphic to ω , and let (e_i) be a sequence in E corresponding to the usual basis of ω . Then

$$\lim_{n\to\infty} \mu\bigg(\bigcup_{k=n}^{\infty} \operatorname{supp} e_k\bigg) = 0,$$

where μ is Lebesgue measure.

PROOF. If the statement is false, there are $\epsilon > 0$ and a subsequence (n_k) of the positive integers such that

$$\mu\left[\bigcup_{i=n_k}^{n_{k+1}-1}\operatorname{supp}\,e_i\right]>\varepsilon,$$

for each k. By [2, Lemma 1] for each k we can find scalars $a_{n_k}, a_{n_{k+1}}, \ldots, a_{n_{k+1}-1}$ such that

$$\operatorname{supp}\left(\sum_{i=n_{k}}^{n_{k+1}-1} a_{i} e_{i}\right) = \bigcup_{i=n_{k}}^{n_{k+1}-1} (\operatorname{supp} e_{i}).$$

Set $g_k = \sum_{i=n_k}^{n_{k+1}-1} a_i e_i$. Then $\mu(\text{supp } g_k) > \varepsilon$, so we can choose scalars r_k so large that $\int (|r_k g_k|/(1+|r_k g_k|)) d\mu > \varepsilon$. But then we have a contradiction, since $r_k g_k \to 0$. O.E.D.

Now let the e_i 's be as in Lemma 2, and let \mathcal{F} be the family of all finite subsets of the positive integers. For each $F \in \mathcal{F}$, let

$$C_F = \bigcap_{i \in F} \operatorname{supp} e_i \sim \left(\bigcup_{i \notin F} \operatorname{supp} e_i\right).$$

The sets $\{C_F: F \in \mathcal{F}\}$ are pairwise disjoint and (the important point), by Lemma 2, $\mu(\bigcup_{i=1}^{\infty} \sup_{i \in \mathcal{F}} C_i) = 0$.

Let (C_i) be an enumeration of the nonempty sets among the sets C_F , $F \in \mathcal{F}$.

We shall describe a repetitive procedure for generating the sequence \tilde{e}_i . The procedure alternates between two similar steps in such a way that we are sure to consider every e_i and every C_i . During each step, we delete elements from the sequence (e_i) and the enumeration (C_i) .

Step 2s-1 (s=1, 2, ...). Find the smallest subscript m such that e_m has not been deleted from the sequence (e_i) . (In the first application of this step, m=1.) Choose n such that $C_n \cap \text{supp } e_m \neq \emptyset$.

Consider the (finite) set

$$P_{2s-1} = \left\{ e_i | C_n : i \in F_{2s-1} \right\}$$

consisting of all restrictions $e_i|_{C_n}$ for which $C_n \cap \text{supp } e_i \neq \emptyset$. (Only e_i 's which have not been deleted on a previous step are to be included.) From this set extract a subset $\{e_i|_{C_n}: i \in K_{2s-1}\}$ which is a basis for the span of P_{2s-1} .

We require that $e_m|_{C_n}$ be one of the elements of this basis.

Let $\tilde{e}_k = e_k$ for k in K_{2s-1} , and delete those e_k 's from the original sequence (e_i) . For each j in $F_{2s-1} \sim K_{2s-1}$, let g_j be the linear combination of the functions $\{\tilde{e}_k \colon k \in K_{2s-1}\}$ such that $e_j + g_j \equiv 0$ on C_n . For j in $F_{2s-1} \sim K_{2s-1}$, replace each e_i in the original sequence by $e_i + g_i$ (and relabel it e_i).

Delete C_n from the original enumeration (C_i) , and define $A_{2s-1} = C_n$.

Step 2s (s = 1, 2, ...). Find the smallest subscript n such that C_n has not been deleted from the enumeration (C_i) . Delete C_n from the enumeration, and define $A_{2s} = C_n$. Choose an m with $C_n \cap \text{supp } e_m \neq \emptyset$. (If there is no such m, set $F_{2s} = K_{2s} = \emptyset$ and terminate this step.) Just as in the odd-numbered step above, consider the set P_{2s} , extract a basis, define the corresponding \tilde{e}_i 's, delete those elements from (e_i) , and replace other elements in (e_i) . This ends step 2s.

To generate the complete sequence \tilde{e}_i , we do step 1, step 2, step 3, . . . Notice that after step 2s,

$$\operatorname{span}\{\tilde{e}_i\colon \tilde{e}_i \text{ has been defined}\} \supset \operatorname{span}\{e_1,\ldots,e_s\}.$$

Thus

(a) $\operatorname{span}(\tilde{e}_i) = \operatorname{span}(e_i)$.

Also,

- (b) $\bigcup_{s=1}^{\infty} A_s = \bigcup_i C_i = \bigcup_i \text{ supp } e_i = \bigcup_i \text{ supp } \tilde{e_i}$. It is easy to see that
- (c) for each s, $\{\tilde{e}_i|_{A}: i \in K_s\}$ is a linearly independent set of functions; and
- (d) $\tilde{e}_i|_{A_i} \equiv 0$ for $l < s, i \in K_s$.

From (c) it follows that for each s there is a sequence $(A_m)_{m=1}^{\infty}$ of pairwise disjoint measurable sets which partition A_s and have the property that, for each m, the set of restrictions $\{\tilde{e_j}|_{A_m}: j \in K_s\}$ is linearly independent. (This is proved in Lemma 3.) Now define

$$B_i = \bigcup_{j=1}^i A_{i-j+1}^j,$$

for each *i*. Note that $\{B_i\}$ is a partition of \bigcup_i supp e_i . Also note that, for each *i*, only finitely many of the functions \tilde{e}_i are not identically zero on B_i -namely, those defined in the *i*th step and possibly some of those defined in earlier steps. Thus conditions (i), (ii), and (iv) are satisfied for the sequences (\tilde{e}_i) , (B_i) . It remains to check condition (iii).

Let k be an integer and suppose that

$$\sum_{i\in N_k} c_i \tilde{e}_i \equiv 0 \quad \text{on } B_k;$$

we must show that each c_i is zero. Write $N_k = M_1 \cup M_2 \cup \cdots \cup M_k$, where i is in M_j if \tilde{e}_i was defined in step j. Then $\sum_{i \in N_k} c_i \tilde{e}_i|_{A_k^1} \equiv 0$. But on A_k^1 all \tilde{e}_i are zero except those defined in step 1. So

$$\sum_{i\in M_1}c_i\tilde{e}_i|_{A_k^1}\equiv 0;$$

since restrictions to A_k^1 are linearly independent, it follows that $c_i = 0$ if i is in M_1 . Next, working on A_{k-1}^2 , we obtain that

$$\sum_{i\in M_1\cup M_2}c_i\tilde{e}_i|_{A_{k-1}^2}\equiv 0,$$

and then $\sum_{i \in M_2} c_i \tilde{e}_i|_{A_{k-1}^2} \equiv 0$, and we conclude similarly that $c_i = 0$ for i in M_2 . Proceeding in this way, we obtain that all the c_i 's are 0. This shows that the

sequences (\tilde{e}_i) , (B_i) have the properties claimed for them and completes the proof of the theorem.

LEMMA 3. Let A be a measurable set of positive measure in [0, 1] and let $(f_i)_{i=1}^n$ be linearly independent elements of $L_0(A)$. Then there are disjoint measurable subsets A_1 and A_2 of A, each of positive measure, such that $\{f_i|_{A_1}\}$ and $\{f_i|_{A_2}\}$ are linearly independent sets.

PROOF. For a measurable set B in A of positive measure, define $\Re_B = \{r = (r_1, r_2, \dots, r_n): \sum r_i f_i = 0 \text{ a.e. on } B\}$. We first show that given B, there is a measurable $C \subset B$ of positive measure such that if $D \subset C$ and D has positive measure, then $\Re_D = \Re_C$. To see this, given B, choose, if possible, $B_1 \subset B$, B_1 of positive measure, and a vector r^1 in \Re_{B_1} , $r^1 \neq 0$. Now choose, if possible, a set $B_2 \subset B_1$, B_2 of positive measure, and a vector r^2 in \Re_{B_2} , r^2 independent of r^1 . Now choose, if possible, a set $B_3 \subset B_2$, B_3 of positive measure, and r^3 in \Re_{B_3} , r^3 independent of r^1 and r^2 . Continue. This process must terminate with some B_j , $j \leq n$. Thus if $B_j = C$ and $D \subset C$, D of positive measure, then $\Re_D = \Re_C$.

Continuing with the proof of the lemma, we let $\mathscr C$ be the family of all measurable subsets C of A with positive measure and having the property that if D is a measurable subset of C of positive measure, then $R_D = R_C$. The above construction shows that every measurable set in A of positive measure contains a set in $\mathscr C$. Now let $\mathscr C$ be a maximal family of pairwise disjoint elements of $\mathscr C$. Then $\mathscr C$ is countable. Let (C_i) be an indexing of the elements of $\mathscr C$; by maximality, $A \sim \bigcup_i C_i$ has measure zero.

For each i let E_i be any measurable subset of C_i with $0 < \mu(E_i) < \mu(C_i)$ and let $F_i = C_i \sim E_i$. Let $A_1 = \bigcup_i E_i$ and let $A_2 = \bigcup_i F_i$. Suppose r is a nonzero vector in \Re_{A_1} . Then $r \in \Re_{E_i}$ for each i, so $r \in R_{C_i}$ and then $r \in \Re_{A_i}$, contradicting the linear independence of (f_i) on A. Similarly, \Re_{A_2} contains the 0 vector alone. The proof of the lemma is complete.

REFERENCES

- 1. N. J. Kalton and N. T. Peck, Quotients of $L_p(0, 1)$ for 0 , Studia Math. 64 (1979), 65-75.
- 2. S. Kwapien, On the form of a linear operator in the space of all measurable functions, Bull. Acad. Polon. Sci. 21 (1973), 951-954.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801 (Current address of N. T. Peck)

Current address (T. Starbird): Jet Propulsion Laboratory, Pasadena, California 91109