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L0 IS «-TRANSITIVE

N. T. PECK AND T. STARBIRD

Abstract. Let Lq be the space of measurable functions on the unit interval. Let F

and G be two subspaces of Lq, each isomorphic to the space of all sequences. It is

proved that there is a linear homeomorphism of Lq onto itself which takes F onto

G. A corollary of this is a lifting theorem for operators into Lq/F, where F is a

subspace of Lq isomorphic to the space of all sequences.

Let L0 denote the space of all measurable functions on [0, 1] with the topology of

convergence in measure. In [1] it was proved that if F and G are finite-dimensional

subspaces of L0 of the same finite dimension, then there is an isomorphism (linear

homeomorphism) of Lq onto itself which takes F onto G. In this note we prove this

result when F and G are isomorphic to to, the space of all sequences.

Theorem. Let F and G be subspaces of L0 which are isomorphic to <o. Then there is

an isomorphism of Lq onto itself taking F onto G.

We give a corollary and then prove the theorem. Recall that an F-space X has

L0-structure if, for each e > 0, X can be written as a topological direct sum

X = ®"_ j X, where each X¡ is a subspace of X and the diameter of X¡ is less than e,

for each / (see [1]).

Corollary. Let F be a subspace of L0 which is isomorphic to w. Let X be an

F-space with L0-structure, and let T be a linear operator from X into L0/F. Then

there is a unique linear operator T from X to L0 such that T = ttT, where it is the

canonical quotient map from L0 onto L0/F. (T is said to be a lifting of T.)

Proof of the corollary from the theorem. We first give some notation and

describe a special setting of the corollary which will be useful in the proof of the

theorem.

If / is in L0, we denote by [/] the one-dimensional space spanned by /. The

support of/ will be denoted by supp/. If A is a measurable subset of [0, 1], we

denote by L0(A) the subset of L0 consisting of all/such that supp/ c A. As usual,

functions equal almost everywhere are identified, and relations between sets are

stated modulo sets of measure zero.

Suppose that (/) is a sequence of nonzero elements of Lq such that the sets

S¡ = supp/ are pairwise disjoint. Let F =span(/). It is clear that on F, the
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Lq-topology is equivalent to the topology of convergence in measure on each S¡;

hence F is isomorphic to a. We call a copy of u obtained in this way a disjoint copy

of w.

Keeping the previous notation, we suppose that F = span(/) is a disjoint copy of

to. Then if B = U, supp/ and if C = [0, 1] ~ B, we have that Lq/F is the

topological product Lq(C) ® II °L, L0(supp/)/[/], canonically. Suppose T: X-+

Lq/F is a linear operator. Let q¡ be the quotient map of Lq/F onto L0(supp/)/[/],

for each i. By [1, Theorem 3.6], for each i there is a map T¡: X —» L0(supp/) which

is a lifting of the map q,T. Then the map Xc^ ® n,7j is a lifting of 7", as required.

The uniqueness of T follows immediately: if Tx is another lifting of T, then T — Tx

maps into the locally convex space F, and so must be identically zero.

Now suppose G is any isomorph of <¿ in L0. We have shown that the conclusion

of the corollary holds for Lq/F, above. By the theorem, there is an isomorphism of

Lq onto itself which takes F onto G; hence the corollary holds in general.

Proof of the theorem.

Lemma 1. Let F = span(/) and G = span(g,) be two disjoint copies of « in L0.

Then there is an isomorphism of Lq onto itself which takes F onto G.

Proof. Let A = [0, 1] ~ U " , supp/ and let B = [0, 1] ~ U ~ , supp g¡. Let

C = A u supp/, and let D = B u supp g,. By [1, Proposition 2.2] there is an

isomorphism Tx of L0(C) onto L0(D) taking/, onto g,. For the same reason, if

i > 2 there is an isomorphism T¡ of Lr/supp/) onto L0(suppg,) taking/ onto g¡.

Putting these isomorphisms together in the obvious way yields the result. Q.E.D.

We next consider an intermediate case (the linearly independent case):

Let (e) be a sequence in L0 equivalent to the natural basis of w. In addition,

assume that there is a partition (B¡) of Uy supp e, such that for each /',

N, = {/ E N: (supp ej) n B, + 0}

is a finite set, and the set of restrictions {ej\B:j £ N¡) is a linearly independent set.

By [1, Proposition 2.2], for each i, there is an isomorphism T¡ of L0(ß,) onto itself

taking the functions {ej\B:j E N¡) onto disjointly supported functions.

Then the maps Tf obviously induce an isomorphism of L0( U, supp e¡) onto itself

taking the e/s onto disjointly supported functions. This completes the proof in this

case, since it has been reduced to the disjoint case.

Turning now to the general case, let (e¡) be a sequence equivalent to the natural

basis of w, with no additional assumptions. We will prove: there is a basis (**■) of

span(e,) and a sequence (B¡) of pairwise disjoint measurable sets satisfying

(i) each ê, is a finite linear combination of the efs;

(ii) for each i, the set N¡ = {/ E N: supp ëj n B¡ ^ 0} is a finite set;

(iii) for each /', the set of restrictions {ëj\B : j £ N¡) is linearly independent;

(iv) U i B¡ = Uj supp ëj.

Once this has been proved, the argument for the linearly independent case can be

applied to the sequences (e¡) and (B¡) and the proof of the theorem will be

complete.

We next single out an important property of arbitrary isomorphs of « in Lq.
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Lemma 2. Let E be a subspace of L0 isomorphic to u, and let (e¡) be a sequence in E

corresponding to the usual basis ofu. Then

(00 \

U supp ek j = 0,
k-n I

where p is Lebesgue measure.

Proof. If the statement is false, there are e > 0 and a subsequence (nk) of the

positive integers such that

supp et   > e,

for each k. By [2, Lemma 1] for each k we can find scalars a^, a„k + x, . . . , a^+1_i

such that

supp      2    aie¡   =    U    (supp <?,).

Set gk = 2"i+^_1 a,et. Then /x(supp gk) > e, so we can choose scalars rk so large that

f(\rkgk\/(l + \rkgk\)) dp > e. But then we have a contradiction, since rkgk^*0.

Q.E.D.
Now let the e,'s be as in Lemma 2, and let ^ be the family of all finite subsets of

the positive integers. For each F £ 9% let

CF = H   SUPP «, ~ ( U   supp e, ).

The sets {C^-: F E ÍF} are pairwise disjoint and (the important point), by Lemma

2, M(U °1i supp e, ~ U Fe^ CF) = 0.

Let (C,) be an enumeration of the nonempty sets among the sets CF, F E &.

We shall describe a repetitive procedure for generating the sequence it. The

procedure alternates between two similar steps in such a way that we are sure to

consider every e¡ and every C,. During each step, we delete elements from the

sequence (ef) and the enumeration (C().

Step 2s — 1 (s = 1, 2, . . . ). Find the smallest subscript m such that em has not

been deleted from the sequence (e¡). (In the first application of this step, m = 1.)

Choose n such that C„ n supp em =£ 0.

Consider the (finite) set

^-i = He: ' G ̂ 2,-.}

consisting of all restrictions e¡\Ci¡ for which C„ n supp e, ^ 0. (Only e,'s which have

not been deleted on a previous step are to be included.) From this set extract a

subset {e,|c : / E K2s_x) which is a basis for the span of -P^-i-

We require that em\c be one of the elements of this basis.

Let ëk = ek for k in K2s_x, and delete those eks from the original sequence (e¡).

For each / in F2s_x — K^-u let g¡ be the linear combination of the functions

{ëk: k E ^2j-i} sucn tnat ej + gj = 0 on C„. For/ in F2s_x — Äji-i» replace each

e, in the original sequence by e?, + gj (and relabel it ef).
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Delete C„ from the original enumeration (C¡), and define A2s_x = C„.

Step 2s (s = 1, 2, . . . ). Find the smallest subscript n such that Cn has not been

deleted from the enumeration (C¡). Delete C„ from the enumeration, and define

A^ = C„. Choose an m with C„ n supp em ¥= 0 (If there is no such m, set

Pis — Kis = & an(i terminate this step.) Just as in the odd-numbered step above,

consider the set P^, extract a basis, define the conesponding ë/s, delete those

elements from (e¡), and replace other elements in (e¡). This ends step 2s.

To generate the complete sequence i„ we do step 1, step 2, step 3, . . . . Notice

that after step 2s,

span{e,: ë, has been defined) D span{e„ . . . , es}.

Thus

(a) span(e) = span(e,).

A-lSOj

(b) U ^1, As = U, C, = U, supp e¡ = U, supp e¡. It is easy to see that

(c) for each s, {e¡\A : i E Ks) is a linearly independent set of functions; and

(d)ëi\Ai = 0forl<s,ieKs.

From (c) it follows that for each s there is a sequence (vi^)^_, of pairwise

disjoint measurable sets which partition As and have the property that, for each m,

the set of restrictions {ëj\A, : j e. Ks] is linearly independent. (This is proved in

Lemma 3.) Now define

Bt - Ü Aj_J+x,
/—i

for each i. Note that {¿?,} is a partition of U, supp e¡. Also note that, for each »,

only finitely many of the functions ëj are not identically zero on Ä,-namely, those

defined in the /'th step and possibly some of those defined in earlier steps. Thus

conditions (i), (ii), and (iv) are satisfied for the sequences (e¡), (B¡). It remains to

check condition (iii).

Let k be an integer and suppose that

2  c¡e¡ = 0   onBk;
i<ENk

we must show that each c, is zero. Write Nk = M, u M2 u • • ■ u Mk, where i is

in Mj if ë, was defined in step/. Then 2,eArt cA\aI — 0. But on /1¿ all e, are zero

except those defined in step 1. So

iSAf,

since restrictions to ^¿' are hnearly independent, it follows that c, = 0 if / is in Mx.

Next, working on Ak_,, we obtain that

i e Af, u Af2

and then 2,eAÍ2 cA\aí. = 0, and we conclude similarly that c, = 0 for i in M2.

Proceeding in this way, we obtain that all the c,'s are 0. This shows that the
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sequences (e¡), (B¡) have the properties claimed for them and completes the proof

of the theorem.

Lemma 3. Let A be a measurable set of positive measure in [0, 1] and let (/)"_, be

linearly independent elements of Lq(A). Then there are disjoint measurable subsets Ax

and A2 of A, each of positive measure, such that {f¡\A} and {/|^2} are linearly

independent sets.

Proof. For a measurable set B in A of positive measure, define %LB = {r =

(/■„ r2, . . ., /•„): 2>,/ = 0 a.e. on B). We first show that given B, there is a

measurable C c B of positive measure such that if D c C and D has positive

measure, then <SlD = <3lc. To see this, given B, choose, if possible, Bx c B, Bx of

positive measure, and a vector rx in <3lB , rx =£ 0. Now choose, if possible, a set

B2 c Bx, B2 of positive measure, and a vector r2 in iils , r2 independent of rx. Now

choose, if possible, a set B3 c Ä2, 2?3 of positive measure, and r3 in <3lB , r3

independent of rx and r2. Continue. This process must terminate with some B,,

j < n. Thus if Bj• = C and D c C, Z) of positive measure, then <3lD = tflc.

Continuing with the proof of the lemma, we let & be the family of all measurable

subsets C of A with positive measure and having the property that if D is a

measurable subset of C of positive measure, then RD = Rc. The above construc-

tion shows that every measurable set in A of positive measure contains a set in &.

Now let Q be a maximal family of pairwise disjoint elements of &. Then G is

countable. Let (C,) be an indexing of the elements of 6; by maximality, A —

U, C, has measure zero.

For each /' let E¡ be any measurable subset of C, with 0 < p(E¡) < p(C¡) and let

F¡ = C, ~ E¡. Let Ax = U¡ E, and let A2 = U, Fj- Suppose r is a nonzero vector

in %A . Then r £ l3lE( for each >*, so r £ Ä^ and then r£ ^, contradicting the

linear independence of (/) on A. Similarly, <3lA contains the 0 vector alone. The

proof of the lemma is complete.
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