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ON THE DIMENSION OF THE ZERO

OR INFIMTY TENDING SETS

FOR LINEAR DIFFERENTIAL EQUATIONS

JAMES S. MULDOWNEY1

Abstract. There are well-known conditions which guarantee that all solutions to a

system of n differential equations x' = A(t)x, t G [0, a), satisfy lim,_,„|x(/)| = 0

[oo]. Under certain stability assumptions on the system, Hartman [2], Goppel [1]

and Macki and Muldowney [4] give necessary and sufficient [sufficient] conditions

that the system has at least one nontrivial solution satisfying lim,_Mi)|jc(0| ~ 0 [oo].

These results are extended by studying a sequence of matrices Alk\t), k =

1,. .. ,n, related to A(t) such that, under the same stability assumptions as before,

the given system has an (n — k + 1 (-dimensional zero [infinity] tending solution

set if and only if [if] all nontrivial solutions of the system y' = A lk\t)y tend to zero

[infinity].

Introduction. Consider the system of differential equations

(1) x' = A(t)x,       /£[0,w),

where A is an « X « matrix of complex-valued continuous functions on [0, w) and

x is a column vector. In generalizing a result of Milloux [6] for second order scalar

equations, it was shown by Hartman [2] (cf. [3, p. 501]) that if 0 < linL^JxiOl <

oo exists for all solutions x, and | • | is the Euclidean norm, then there exists a

nontrivial solution such that lim,_>(J|x(/)| = 0 if and only if lim,^ f0 ReTr A =

-oo. Coppel [1, p. 60] showed that the result holds for any norm. Macki and

Muldowney [4] weakened the restriction that |x(i)| tends to a limit to the stability

requirement I below. Analogous results on the existence of infinity tending solu-

tions were also obtained in [1, 2, 4].

Results. It will be assumed that either I or II holds for (1).

I. (i) All solutions satisfy lim sup,_Ki)|x(/)| < oo.

(ii) If lim inf,_Jx(0| = 0, then linvJx(i)| = 0.
II. If lim sup,^Jx(/)| = oo, then lim,_Jx(f)| = oo.

The condition I is more restrictive than Lyapunov stability of (1) and is implied by

uniform stability; cf. [4]. I holds in particular if lim/_>u|x(0| < oo exists for all

solutions and II holds if lim^Jxi/)! < oo exists for all solutions. Concrete condi-

tions which imply I or II are given later in the paper.

If X = [xj] is any « X m matrix and 1 < k < min{«, m}, the A:th compound

X(k) of X is the Ck) X (™) matrix whose entries are xjy{*, the minors of X
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determined by the rows (i, . . . ik) and the columns (/, • • ■/*)» 1 < *i < i2

< ■ • ■ < ik < «, 1 < /i </2 < • • • </t < m. These ^-tuples taken in lexico-

graphic order index the rows and columns respectively of Xik\ Thus, for example if

m = n, X(X) = [x/] = X and X(n) = xjf ;;;" = det X. A discussion of compound

matrices may be found in [5 and 8].

If A = [af] is an n X n matrix and 1 < k < n, then A[k] is the ("k) X ("k) matrix

defined as follows.

(a) For any integer p = I, . . ., (k) and ordered &-tuple of integers (px . . .pk),

1 < px <p2 < • • • <pk < «, write (p) = (/>,.. .pk) if (px ...pk) is the pih k-

tuple in the lexicographic order.

(b) Let (p) = (px ■ ■ .pk) and (q) = (qx . . . qk). If there are two or more entries

in (p) which do not occur in (q), then the entry in the pth row and #th column of

A[k] is 0. If there is exactly one entry ps in (p) which does not occur in (q) and qr in

(q) does not occur in (p), then the entry in pth row and ^th column of Alkx is

(-l)r+íúL*. If (p) = (q), then the conesponding diagonal element is of' + a£*

+ • ■ • +opK For example, if A is any « X « matrix, then Aixx = A, AinX = a}

+ • • • +a„" =Tr^.

We will also consider the equation

(k) y' = A*-k\t)y,       k - 1.n,   t E [0, w).

The relationship between (1) and (k) is established by Lemma 1. The equations (k)

were first studied by Schwarz [7], where further examples of the matrices Aikx may

be found.

Lemma 1. IfX(t) is an n X m [fundamental] matrix solution of (I), then Xik)(t) is

an ("k) X (™) [fundamental] matrix solution of (k).

Proof. From the rule for differentiating determinants and (1)

d k       n

dt   '••••*      ,fi r-i   ' "•■'■•■•'*

-(l,<K■i /■«(,)
and therefore dX(k)/dt = yi1*1^^, as asserted. Also, if A1 is fundamental, then

m = n and l"' is fundamental since a theorem of Sylvester states detf^^] =

[det X]a, where a = (nkZ\) (cf. [5, p. 17 or 8, p. 64]).

Lemma 2. If (I) satisfies Condition I then (k) satisfies Condition I.

Proof. Suppose Condition I holds for (1). Clearly Condition I(i) also holds for

(k). To prove that I(ii) holds for (k), first observe that the solution space of (1) is

the direct sum of the set of zero-tending solutions of (1) and a supplementary

subspace of solutions which are bounded but do not tend to zero. Thus a

fundamental matrix X(t) for (1) exists in which the first n — m columns span the

zero-tending set and the last m columns span the supplementary subspace, 0 < m

< n. It follows from Lemma 1 that if m = 0 then every solution y(t) = Ar(*)(0l
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satisfies lim,^ y(t) = 0 and (k) satisfies Condition I(ii). If m > 0, let V(t), Z(t) be

the « X (n — m), n X m matrices formed respectively from the first n — m and last

m columns of X(t). Thus any solution v of (k) may be expressed in the form

y(t) = *<*>(,){ - W(t)V + Z«\t)S

where W(t) is an ("k) X [("k) — (")] matrix in which each entry is a A: X A: minor of

X(t) of which at least one column consists of entries from a column of V(t). Thus

lim,^, W(t)r¡ = 0 for all n. It will be shown that, if lim inf^J y(t)\ = 0, then f = 0

and therefore lim,_M<) y(t) = 0 so that (k) satisfies I(ii). To see this, observe that if

lim inf,^Jy(t)\ = 0, then lim inf,^Jz(0| = 0 where z(t) = Z(*>(f)f. Thus there

exists a sequence /, £ [0, w) such that lim,^^ t¡ = w, lim,^.^ z(t¡) = 0 and

lim,^^ Z(t¡) = C exists. Then

Cwi¡ = lim Z(*>(i,.)f = lim z(t,) = 0.
i—»OO I—»00

If f =^ 0, then the ("k) X (£) matrix Cw has less than maximal rank which, by

Sylvester's Theorem implies that C has less than maximal rank. Thus there is a

nonzero vector p such that

0 = Cp = lim Z(t,)p = lim Z(t)p
I—»OO /—»00

by Condition I(ii) for (1), which contradicts the definition of Z. Thus f = 0 as

asserted.

The author is indebted to Professor Binyamin Schwarz for pointing out an enor

in the original proof of Lemma 2.

Theorem, (a) Suppose the system (1) satisfies Condition I. Then (1) has an

(n — k + I)-dimensional set of solutions x satisfying lim,_K<J|x(/)| = 0 if all solutions

y o/(k) satisfy lim inf,_Ki)| y(t)\ = 0 and only if all y satisfy lim,_HiJ| v(/)| = 0.

(b) Suppose (1) satisfies II. Then (1) has an (n — k + I)-dimensional set of

solutions x satisfying limí_><íJ|x(í)| = oo if all nontrivial solutions y of (k) satisfy

lim sup,^Jy(t)\ = oo.

In the case k = n this theorem is Theorem 1 of [4].

Proof of (a). Let X(t) be a fundamental matrix for (1). Condition I(i) implies

there exists a sequence of points t¡ E [0, to) such that hm,^.^, /, = w and

lim,^,^, X(t,) = C exists. Thus each solution x(t) = X(t)£ of (1) satisfies

lim,^^ x(t¡) = C£. From this it follows that if all solutions of (k) satisfy

lim inf^J y(t)\ = 0, then the lemmas imply

0 = lim Xik\t) = lim *<*>(/,.) = C(*\
t—«0 I—»oo

i.e., the rank of C is at most k — 1. Therefore there is a solution set of dimension at

least « — k + 1 such that hm,^^ x(t¡) = 0 and hence lim inf,_>u |x(i)| = 0. Now

Condition I(ii) shows that (1) has a solution set of dimension at least n — k + 1

satisfying lim,_Jx(i)| = 0.

To prove the necessity of the condition in Part (a), suppose that (1) has an

(n — k + l)-dimensional set of zero tending solutions. Then any set of k linearly
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independent solutions contains a zero tending solution in its span and hence, from

I(i), lim,^ Xw(t) = 0 so that all solutions v of (k) satisfy lim,_J v(r)| = 0.

Proof of (b). Suppose all nontrivial solutions v of (k) satisfy lim sup,_J,y(r)| =

oo. Thus, if X(t) is a fundamental matrix of (1), every column of Xik\t) contains an

unbounded entry which implies that every set of k independent solutions to (1)

contains an unbounded solution. Thus the subspace of bounded solutions has

dimension at most k — 1 and a supplementary subspace, except for the solution

x = 0, consists entirely of unbounded solutions and has dimension at least n — k

+ 1. From II of these solutions satisfy lim,_Jx(f)| = oo.

It remains to provide some concrete criteria for the conditons of the theorem to

hold. The Lozinskiï measure (cf. [1, pp. 41, 58]) of a matrix A is defined by

p(A) =  lim+ |[|/+/l4|-1]

and has the property that, for each solution x of (1),

1*0)1 exp(-jTV[^]),        \x(t)\ exp(^V[-^])

are nonincreasing and nondecreasing functions of / respectively. The following

observations on (1) may be deduced.

III. If lim,_ [lim inf,_J/¿ p(A) = -oo, then lim,_ [lim inf,^,] |x(r)| = 0 for all

solutions.

IV. If lim,^ [lim inf,^J /¿ p(-A) = -oo, then lim,^, [limsup,_J |x(f)| = oo

for all nontrivial solutions.

V. If ¡¡o p(A) < M for all /0, t, 0 < /0 < t < u, then (1) satisfies Condition I.

VI. If f'tg p(-A) < M for all t0, t, 0 < t0 < t < u, then (1) satisfies Condition II.

The value of p(A) depends on the norm | • | used. In the cases |x| = sup, |x,|,

2, |x,|, [2|x,|2]l/2, the Lozinskiï measure is given by

p(A) = sup (Re aj + S kl).    ™P (** 4 + S l^l).   \

respectively, where X, > X2 ̂  ' ' ' ^ \ are me eigenvalues of \(A* + A). Here

A* is the Hermitian transpose of A. It is also easy to write down p(AlkX) in these

cases which are given by

+ *¿)+   S (Kl+--- +1^1)

p(aW) =

sup

(0

sup

(0

Re«' +

Re«' +

y*(0

jew
+\«h)

Xx + ■ • • +Xk,

respectively. Also, it is clear that p(A[-nX) = Re Tr A since AlnX = Tr A.

Corollary. Suppose that

(0

f'p(A) < M    \ f'p(-A) M for all íq, t, 0 < tQ < t < w,
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(Ü)

lim inf f'p(Axkx) = -oo    [ lim inf f'p(-AXk]) =
t—*03       Jq \_        t—*W       JQ

-co

Then (1) has a set of solutions x of dimension at least (n — k + 1) for which

lim,_Jx(0| = 0 [lim,_ |x(0| - oo].

This corollary follows from III, V [IV, VI] and the theorem.

Example. Consider

A(t) =

1
1
2

«      -t      x

t¿

t > 1.

Then, for the norm |x| = sup, |x,|,

p(A) = 0,       p(A™) = -1(1 + t),       p(A™) = - (1 + t + t2).

From the corollary, (1) has a set of solutions x of dimension at least 2 for which

lim,_>Q0|x(r)| = 0. In fact, the dimension is exactly 2 since x(f) = (1, 1, 1)* is a

constant solution.

It may be observed that interesting asymptotic information about (1) may be

obtained by combining changes of variable with the results in this paper as was

done in detail in [4] in the case k = n.
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