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LIPSCfflTZ FUNCTIONS AND SPECTRAL SYNTHESIS

SUNG-YUNG LEE

Abstract. An S-set in the circle group T is a closed subset S of T for which

j(S) — k(S). We construct a non-S-set S satisfying

_
U   LiP„(Dn k(S)cj(S).

o>0

Thus Lipa(T) n A(T) is not a big enough part of A{T) to test the synthesizability

of a given closed subset of T.

1. Introduction. Let A(T) denote the Banach algebra of functions with absolutely

convergent Fourier series. For a closed subset S of T, we define

k(S) = {fŒA(T):f = 0onS}

and

j(S) = {/ E k(S): / = 0 on a neighborhood of S }.

A closed subset S of T is called an S-set if the closure of j(S) in A(T) equals

k(S). For notations and basic facts about spectral synthesis, we refer the reader to

[1].
It is well known that functions in the Lipschitz space Lip1/2(F) are synthesizable,

in the sense that

Lip1/2(r)nA:(S)c/(S),

for any closed subset S of T. On the other hand, for each a less than |, there are

nonsynthesizable functions in Lipa(F) n A(T) (see [2]).

In [6], D. J. Newman shows that, for any closed set 5 of Lebesgue measure 0,

there is a constant a > 0 such that

(1) Lipa(F)nA:(5)c7(S).

Using his condition on a, one can see that, for some 5, the condition (1) holds for

every positive a, that is,

(2) (U   Lipa(F))nA:(S)c/(5).
V a>0 /

Since Lipa(F) n A(T), when 0 < a <\, is big enough to contain nonsynthesiz-

able functions, one might guess that the condition (2) is strong enough to imply

that S is an S-set.
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In this note we shall construct (Theorem 1) a non-S-set that satisfies condition

(2), disproving the above conjecture. Our method can be generalized to get a

stronger result (Theorem 2).

2. Lemmas. In this section, let S denote any closed set of Lebesgue measure 0.

The complement Sc = T — S is a countable union of open intervals. Write

Sc = U"_o I„> wnere e„ = |7„|, the length of I„, for n = 0, 1, 2,_Thus 2w =

First of all, we quote a lemma from [6].

Lemma 1. 7/2 e„a|log ej < oo, then (1) holds.

Note that if 2 e" < oo for every a then an easy calculation shows that

2 epilog e„| < oo. Thus (2) holds for S. One interesting observation is that, under

this condition, condition (2) holds for every closed subset of S, as we shall see

below.

Lemma 2. Let S be as above and S' be a closed subset. Write Sc = U*_0 I„>

(S'Y = (J~_0 Jn, "here |7„| = e„ and \Jn\ = e'n. If 2 e° < oo and 0 < a < 1, then

2 (t'J < oo.

Proof. Notice that, for every sequence {x„} of positive real numbers, 2"_0 x"

> (2 •*„)"•
Since S' c S, Sc c (S')c so that each 7„ is contained in exactly one of the Jk's.

Now it follows that

¿k=\Jk\ = (Jk n s) u   U C4 n O   - S V* n 7„| =  2 e„.
n = 0 n = 0 i,C^

Thus
00 00/ \°°/ \ooo

S <■ - 2 ( 2 c) > S   2 ü - 2 «r-
n = 0 *: = 0\/„c/t       / k-0\In<zJk     I k~0

We use these lemmas to prove the following lemma.

Lemma 3. Let S be as above. If 2 e^ < oo for every a > 0, then every closed

subset S' of S satisfies (2).

3. Construction. The first part of our construction will be that of Kahane and

Salem [4, p. 13], slightly modified to get a set of Lebesgue measure 0.

Take any sequence {tk}l°=o of positive real numbers so that 2" 2ktk < 2ir and

2q° 2ktk < oo for each a > 0. For example, one may take tk = 2_Ar\ k =

0, 1, 2,_Then

22*2-** = 1 + 22*-*2 < 1 + 22-* < 2m
o i o

and 2o* 2*(2-*2)° = 2¿° 2-a*2+* < oo by the ratio test.

Put e„ = tk if 2k < n < 2k+l, k = 0, 1, 2, ..., and e0 = 2tt - 2,= «„•
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Let 70 = (Sf en, 2m), and

Eq — Eq — 0,2en = F - 70.

Note that |70| = 2w — 2" e„ = 6q. Let 7t be the open interval of length e, and

having center at \ 2" e„, i.e., at the center of the interval E0X. Then E0X — 7 is the

union of two closed intervals. Let Ex denote the left interval and Ex the right one.

Put Ex = F,1 u E2. Notice that

|£.'l = !£>! = T2*n   and   £,c£„.

Suppose we have defined F^ as a disjoint union of closed intervals F*, . . ., F^

C Ek_x so that |£t'| = \E^\ = • • • = |£^*|. We define £it+1 as follows.

Given/ = 1, 2, . . ., 2*, let 72*+>_, be the open interval of length e2k+J_x — tk

and having the same center as EJk. Then E{ — I2/.+J_x is the union of two closed

intervals of the same length, say EkJ+x ' and È$+ x, the left interval and the right one,

respectively. Put Ek+X = UjSl H+i- Then s= f~^-oEk is a perfect set of
measure 0. Also, by our choice,

oo

sc = U /„,     |/J = «*
0

and 2 e" = 2 2ktk < oo, for each positive a.

Next we shall show that S is a "perfect symmetric" set of the type employed in

Kahane and Katznelson's paper [3], that is,

S- U) + 2V*:S* = ±1   ,

for some suitable sequence {rk} of real numbers. This fact seems to be well known,

but the author could not find its proof.

Put r0 =i|£01|, and

'*=HI^-.I-I^I)>
for k > 1. Then r0 is the midpoint of EQX, and r0 + 2^ Skrk is that of some EJn, for

n> \.

Indeed, suppose r0 + 27 Skrk is the midpoint of EJn. If 8n+l = 1, the midpoint of

En+\ is ('o + 2? 8krk) + (î|72-+i+y_,| + ^|F^,|). (Remember that the first term is

the midpoint of E{ and that the second is the distance between midpoints of E{ and

En%x.) But \El\ = |/y*.+y_t| + 2|F„2U so that

¿|/2".+y-.l +\\E?+t\=\{\EÍ\-\E?+x\) = rk.

Hence the midpoint of E2j+X  is r0 + 2, + 1 8krk. Similarly, if 5„+1 = -1, then

r0 + 2Í+ ' 8krk is the midpoint of E2J~X '.

Given any r0 + 2J° 8krk and n > 1, r0 + 2? 8krk is the midpoint of some E{, and

oo

2
* = n + l

V* < 2 '* -t 2 (l^'-.l - l^'l) = M -M-
n + l n + 1
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Thus r0 + 2r Skrk = (r0 + 2? 8krk) + 2~+i 8krk £ E{ c E„ and hence
00

'o + 2 V* G 5.
l

Conversely, let x £ S be arbitrary. For n > 1, since x £ 7¿„, x £ Fjj" for some;.

But EJ„" contains only E2j¿ x ' and E2j¿ x. Thus/n+, is either 2/„ — 1 or 2jn. Define

-1.    if/n+i = 2/„- 1,

1>       iO„+i = 2/„.

Now, by using induction once more, one can see that r0 + 2? 8krk is the midpoint

of EJn\ So it follows that

2\^n\        2li"nl^'"'Ko + ÉV*) ^- 2\c'n 2 Pn    T* u>

as n —» oo. Thus it follows that x = r0 + 2Î° 8krk, which proves our claim.

Since no set of the form {r0 + 2" 8krk: 8k = ± 1} is a set of spectral resolution

[3], S contains a closed subset S' which is not an S-set. But, by Lemma 3, the

condition (2) holds for S'. If we summarize these results, we get

Theorem 1. There is a non-S-set S, satisfying

(U   LiPa(F))nA:(S)c/(S).
V «>o /

4. Remarks. Our result shows that the space Lipa(F) n A(T) is not big enough

to test the synthesizability of a given closed set.

Let <p be any nondecreasing continuous function on [0, 2ir] satisfying the

following conditions:

<p(0) = 0, <p(x) > 0 if x > 0, <p(x)/x is decreasing on (0, 2w] and <p(x + y) <

<p(x) + <p(y) for positive x and v.

Let K„ = {/ E C(T): ||/T - f\\cm < C<jp(|t|), for some C > 0}, where fT(t) =

fit - t) is the translation of/by r. Notice that Lip„(F) = V^ for (p(t) = t".

If we use Theorem 3 of [6] instead of Lemma 1, we can modify our proofs to get

the following theorem, which says, roughly, that the space of functions satisfying

some regularity condition is not big enough to test the synthesizability of a set.

Theorem 2. Let <p be as above. Then there is a non-S-set S, satisfying

vv n k(s) qKs) .

On p. 88 of [5], T. W. Körner constructed, for every continuous increasing

function 77 on [0, oo) with 77(0) = 0, a non-S-set S having, along with other

properties, Hausdorff 77-measure 0. If we take the function H(t) = -1/log r,

0 < t <j, we get ta = o(H(t)) as r-»0, a > 0, and hence the Hausdorff a-

measure Ha(S) = 0 (see [4, p. 26]). Thus, the Hausdorff dimension, a(S), of S is 0,

so that S satisfies the condition (2) (see [€]). This gives an alternate proof of our

Theorem 1.

The author wishes to thank his advisor, Professor C. R. Warner, for his
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