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ON STRONG UNICITY OF L,-APPROXIMATION

ANDRÁS KROÓ

Abstract. Let C,

11/11 = Jo l/MI àx, and let G c C, be a finite dimensional unicity subspace, i.e.

any/ e C, possesses a unique best approximation out of G. Consider an arbitrary

/ G C, such that 0 is its best approximation. Then for any 0 < S <S0 and g e G

with ||/ - ¿|| < 11/11 + 5 it follows that ||g|| < Kw/(S), where w/(h) = (w¡\h)hyl
and wj(h) denotes the modulus of continuity of/. (-1 is used to denote the inverse

function.)

Introduction. Let Ibea normed linear space and let G be a finite dimensional

unicity subspace of X; that is any / E X possesses a unique element of best

approximation g* E G (\\f — g*|| = inf{||/— g||: g E G}). If 0 is the best ap-

proximation of / E X, a question of practical interest is that of how fast the

"nearly best approximations" g £ G satisfying ||/ — g|| < ||/|| + S approach zero

when ô —» 0. Its practical interest is connected with the study of rate of convergence

of different computational algorithms for best approximation and investigation of

continuity of the operator of best approximation.

The study of strong unicity was initiated by D. Newman and H. Shapiro [8] for

Chebyshev approximation. Their results inspired a wide investigation of this

question for different functional spaces. (See also a recent paper of R. Wegmann

[12].)
The purpose of the present note is to solve this problem for L,-approximation.

By a well-known result of M. Krein (see [9, p. 230]) there are no finite dimensional

unicity subspaces in L,. Therefore we consider the space X = C, of continuous

real-valued functions on 7 = [0, 1] with norm ||/|| = /¡ \f(x)\ (Lebesgue integral).

The classical Jackson-Krein theorem states that any Haar subspace of C, is a

unicity subspace. The strong unicity of L,-approximation in the case when G is a

Haar subspace of C, was studied by B. O. Björnestäl [1], [2]; he gave the exact rate

of strong unicity under this condition. Recently, P. V. Galkin [5] and H. Strauss

[10] discovered that Haar subspaces are not the only unicity subspaces of C,. They

proved that splines with fixed knots also satisfy this property. In [3] an analogous

result was given for a special class of splines. These results raise the question of

estimating the rate of strong unicity of L,-approximation for arbitrary unicity

subspaces. It turned out that estimations given by B. O. Björnestäl for Haar

subspaces can be extended to arbitrary unicity subspaces. This extension needs

deeper considerations involving certain ideas of E. W. Cheney and D. E. Wulbert

[41 concerning characterization of unicity subspaces of C,.i   J o j r i
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Let us denote by Wj(h) = max{|/(x,) — fix^l: x,, x2 E 7, |x, — x2| < h) the

modulus of continuity of / E C,. Then set wf(h) = (wjx(h)hyx, where F'x(x) =

min{y: F(y) = x} denotes the inverse function.

Theorem. Let G be a finite dimensional unicity subspace of C,. Consider an

arbitrary /EC, such that 0 is its best approximation. Then for any 0 < 8 < Wj(l)

and g E G satisfying \\f — g\\ < ||/|| + ô it follows that

0) ||g||<c,W/(5),V    / MOM 1    ] V    />

w/itre /Ae constant c, depends only on f and G. Moreover this estimation cannot be

improved in general.

Proof of Theorem. We shall need some well-known characterizations of best

7.,-approximation.

The following statements are equivalent (see [9, p. 46]):

(i) 0 is the best approximation of/;

(") \fi\ztf) g sign /I <■ fz(f) I g\ (g G G);
(iii) there exists a measurable function <py on Z(f) such that |<py| < 1 on Z(f) and

f g sign/ + f      CTy-0       (gE G).
JI\Z(f) Jz(f)

Here and throughout the paper Z(f) = {x E I: fix) = 0}. For a given / we

always fix an arbitrary <py satisfying (iii) and set

r(x)a.  ( ¿S* A*),    xEl\Z(f),
\ <p/x),    x E Z(/).

Furthermore, set OJx) = 7 n (x — h, x + h);

Z,(/) = {x E 7: /t(0A(x) n {x E 7: |/»(x)| < 1}) > 0 for any h > 0};

Z2(f) = {x E 7: p(Oh(x) n {x E #:/*(*) = y}) > 0

for any h > 0 and y = 1 or -1}

(/i(v4) denotes the Lebesgue measure of A); Z*(f) = Zx(f) u Z2(f). It can be

easily verified that Z,(/) and Z2(f) are closed subsets of 7; hence Zx(f), Z2(f) and

Z*(f) are compact. This implies that for any given h > 0

(i - \r\) = «//o > o

and

(3) min      inf    p(Oh(x) n {x E 7:/*(x) = y}) = Ä(A) > 0.
t-±i xez2(f)

Inequalities (2) and (3) are obvious consequences of the fact that continuous

functions on compact sets achieve then minimal value.

We shall need the following lemma which is a modification of a result of Cheney

and Wulbert (see [4, Theorem 23]).
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Lemma. Let G be a finite dimensional unicity subspace of Cx. If 0 is the best

approximation off E C„ then

(4) sup    \g(x)\> c2 sup\g(x)\       (gEG),
iEZ*(j) xei

where the constant c2 is independent of g.

Proof of the lemma. By the equivalence of norms in finite dimensional spaces

we obtain that it is enough to prove that 0 is the only element of G vanishing on

Z*(f). Assume the contrary. Then there exists g, E G \ {0} such that Z*(f) c

Z(gx). Let (a, b) be an arbitrary interval on which g, does not vanish. Then for any

x E (a, b), x E Z*(f) = Zx(f) u Z2(f). Hence there exists an hx > 0 such that

f* = yx a.e. on Oh(x), where yx = 1 or -1. By standard compactness arguments we

obtain that/* = y a.e. on (a, b), where y = 1 or -1. Then we can easily construct a

continuous function p E C, such that \p\ = |g,| on 7 and signp = f* a.e. on

I \ Z(gx) = I \ Z(p). This and the definition of/* yield

/ g signp =f gf* =  f      gf*\< [     |*|       (c?eG).
JI\Z(p\ JI\Z(D\ JZ(n\ Jz(n\'I\Z(p) Z(P) 'Z(P)

Thus 0 is the best approximation of p. But for any 0 < 9 < 1, Z(p — 0gx) = Z(p)

and sign(p — 9gx) = sign/? on 7 \ Z(p). This implies that 0gx is also a best

approximation of p; hence we have arrived at a contradiction. The lemma is

proved.

Now we are able to prove the theorem. Take an arbitrary g E G \ {0} such that

11/ - #11 < 11/11 + S (0 < S < w/1)). Since 0 is the best approximation of / E C,
we have

S > II/- gil- ll/ll

,,, - J        (f- ¿0{sign(/ - g) - sign/} + f     {\g\+ ffpf)
(5) Ji\z(f) JZ(f)

= 2/        iZ-gJ + f     {\g\ + ffpf},
JA(f,g) Jztf)

where A(f, g) = {x E I: 0 </(x) < g(x) or g(x) </(x) < 0}. By (4) and the

compactness of Z*(f), there exists an x E Z*(f) such that

(6) yg(x) >c2sup|g(x)| -c2||¿||c        (y=lor-l).
xei

(Here and in what follows || • ||c denotes the supremum norm on 7, c, (/ =

1, 2, 3, . . . ) will denote positive constants depending just on/ and G.) Further-

more, it can be easily proved that, for any gEG, wg(h) < || g\\cw(h), where w(h) is

a modulus of continuity depending only on G. This and (6) imply that

(7) rëW>(c2/2)||g||c

for any x E 0Cj(x), where c3 = w~x(c2/2). Since x E Z*(f), x belongs to either

Z,(/) or Z2(f). We shall consider these two cases separately.
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Case 1. x E Zx(f). Set F = 0C}(x) n {x E 7: \f*(x)\ < 1}. Since |/*| = 1 on

7 \ Z(f), F c Z(/). Thus we have by (5), (7) and (2)

s > f  {in + g<pf} > f 1*10 - i/d = f   i*i(i - \r\)
JZ(f) JF JOc,(i)

>(c2/2)||g||c«/c3)>c4||g||.

Since 8 < c5wf(8) if 0 < 5 < Wj(l) we obtain estimation (1).

Case 2. x E Z2(/). Then by (3)

(8) m(CC3(x) n {x E 7: /*(x) = f}) > ßA[c3) = c6.

Set 5 = 0C}(x) n {x E 7 \ Z(/): sign/ = f}, ß = C\(x) n {x E Z(/): m, = y}.

Then by (8)

(9) p(B) + p(Q) > c6.

Assume at first that p(Q) > c6/2. Since Q c Z(f), we have by (5) and (7)

c5wf*(8) >8 > f     {|g| + &>,}> [ {| *| + OT/}
•/z(/) ■'e

= 2f||| >c2|||||cit(ô) >c7|||||,
Jq

which was to be proved. Thus we may assume that p(Q) < c6/2. Then by (9)

(10) p(B) > cJ2.

Case 2a. y/ < (c2/4)|| |||c on O^x). Then (7) implies that B c A(f, g). Thus by

(5), (7) and (10) we have

c5wf*(8) > 8 > 2 [        I/-H >2[\f-g\
JA(f,g) JB

> 2/¿(y lllllc - f llillc) - y ll*IU(5) > cglllll

which is again the needed estimation.

Case 2b. y/(x*) > (c2/4)|||||c for some x* E 0Cj(x). Since x E Z2(/) c Z(/),

/(x) = 0. Let us assume that x* > x. (The opposite case can be considered

analogously.) Then we can choose points x < x, < x2 < x* such that f(xx) = 0,

v/(*2) = (c2/4)|| III c and 0 < y/ < (c2/4)|| ||| c on (x„ xj. Evidently

(H) x2-xl>wjl(^ ||*||c).

Moreover, since (x,, Xa) c (x, x*) c 0Cj(x), (7) implies that (x„ x^ c /í(/, |).

Hence using (5), (7) and (11) we obtain

5 > 2f'2\f- || > 2£X2(-||||||C - -|lllllc) > ^||*||c(jc2 - x,)

yll#llcH'/1(:|ll*llc)>^ll*lk/-1(^lllll),

'*i

i.e. (c2/4)|| HI < wf(8). The proof of (1) is completed.
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The sharpness of estimation (1) can be verified similarly as in [6], since the Haar

property was not employed there (see [6, p. 341]).

Conclusion. The usual approach to the solution of the L, -approximation problem

consists in its discretization. In [7] and [11] the rate of convergence of discrete

7.,-approximants was studied for Haar subspaces. These investigations were based

on strong unicity type results. The theorem proved above allows us to extend these

investigations to any unicity subspaces, thus in particular to splines.
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