## SPECTRAL INCLUSION FOR DOUBLY COMMUTING SUBNORMAL n-TUPLES

## RAUL E. CURTO

ABSTRACT. Let  $S = (S_1, \ldots, S_n)$  be a doubly commuting *n*-tuple of subnormal operators on a Hilbert space  $\mathcal K$  and  $N = (N_1, \ldots, N_n)$  be its minimal normal extension acting on a Hilbert space  $\mathcal K \supset \mathcal K$ . We show that  $\mathrm{Sp}(S, \mathcal K) \supset \mathrm{Sp}(N, \mathcal K)$  and  $\mathrm{Sp}(S, \mathcal K) \subset \mathrm{p.c.h.}(\mathrm{Sp}(N, \mathcal K))$ , where  $\mathrm{Sp}$  denotes Taylor spectrum and p.c.h. polynomially convex hull.

1. Introduction. Let S be a subnormal operator on a Hilbert space  $\mathcal{K}$  and N be its minimal normal extension to a Hilbert space  $\mathcal{K} \supset \mathcal{K}$ . A well-known result of Halmos [5] asserts that  $\sigma(S) \supset \sigma(N)$ , where  $\sigma$  denotes spectrum. Bram then proved in [2] that  $\sigma(S) \subset \text{p.c.h.}(\sigma(N))$ , the polynomially convex hull of  $\sigma(N)$ . (He actually proved more: if U is any bounded component of  $\mathbb{C} \setminus \sigma(N)$ , then  $U \cap \sigma(S) = \emptyset$  or  $U \subset \sigma(S)$ .)

The question arises as to whether the spectral inclusion holds for commuting *n*-tuples  $S = (S_1, \ldots, S_n)$  of subnormal operators on  $\mathcal{K}$ . A first comment is in order: not every such n-tuple has a commuting normal extension, i.e., it is not always possible to find a commuting *n*-tuple  $N = (N_1, \ldots, N_n)$  of normal operators on a Hilbert space  $\mathcal{K} \supset \mathcal{K}$  such that  $N_i \mathcal{K} \subset \mathcal{K}$  and  $N_i|_{\mathcal{K}} = S_i$  for all  $i = 1, \ldots, n$  (see [8] for an example). There are a number of conditions that guarantee the existence of such an extension (see for instance [1, 6, 7 and 9]). We shall call the *n*-tuple S subnormal in case it admits a commuting normal extension. It follows from Bram's paper [2] (combining the corollary on p. 88 with Theorem 8) that any doubly commuting *n*-tuple  $S = (S_1, \ldots, S_n)$  (i.e.,  $S_i S_i = S_i S_i$  for all i, jand  $S_i S_i^* = S_i^* S_i$  for  $i \neq j$ ) of subnormal operators is subnormal. (Ito [6] has extended this further.) Also, it is clear that a subnormal n-tuple has a unique, up to isometric isomorphism, minimal normal extension. The n-tuples to be considered are, therefore, the subnormal ones. We must now agree on the right notion of joint spectrum. First, we need some notation. For an *n*-tuple  $T = (T_1, \ldots, T_n)$  of operators on  $\mathcal{K}$ , let  $\sigma_r(T)$  denote the right spectrum of T, that is,  $\sigma_r(T) = \{\lambda \in \mathbb{C}^n :$  $\sum_{i=1}^{n} (T_i - \lambda_i)(T_i - \lambda_i)^*$  is not invertible. If T is commuting and  $\mathscr{Q}$  is a Banach algebra containing the  $T_i$ 's in its center, let  $\sigma_{\mathcal{C}}(T)$  and  $Sp(T, \mathcal{K})$  denote the spectra of T with respect to  $\mathscr{Q}$  and  $\mathscr{K}$ , respectively, i.e.,  $\sigma_{\mathscr{Q}}(T) = \{\lambda \in \mathbb{C}^n : \sum_{i=1}^n (T_i - \lambda_i) A_i \}$ = I cannot be solved for  $A_i \in \mathcal{C}$ . (For a definition of Sp see [4 or 12].)

Received by the editors September 17, 1980; presented to the Society, January 10, 1981. 1980 Mathematics Subject Classification. Primary 47B20, 47A20, 47A62.

Key words and phrases. Subnormal n-tuple, doubly commuting, spectral inclusion.

Janas has shown in [7] that if S is subnormal with minimal normal extension N and  $\mathscr{Q}$  is a maximal abelian Banach algebra containing the  $S_i$ 's, then  $\sigma_{\mathscr{Q}}(S) \supset$  $\sigma(N)$ . (As it turns out, there is universal agreement on the right notion of spectrum for a normal *n*-tuple, since  $\sigma_r(N) = \operatorname{Sp}(N, \mathcal{K}) = \sigma_{C^*(N)}(N) = \sigma_B(N)$  for any abelian  $C^*$ -algebra B containing the  $N_i$ 's.) It is a result of Taylor [12, Lemma 2.1] that  $Sp(T, \mathcal{H}) \subset \sigma_{\mathcal{O}}(T)$  for any Banach algebra  $\mathcal{C}$  whose center contains the  $T_i$ 's, so that  $Sp(S, \mathcal{K}) \supset Sp(N, \mathcal{K})$  is perhaps the appropriate inclusion to study. One could look for joint spectra smaller than Sp, like those considered by Słodkowski [11]. There are easy examples that show that  $\sigma_{\pi,k}$  (k < n) will not do; on the other hand,  $\sigma_{8.0} = \text{Sp for a doubly commuting subnormal } n\text{-tuple } [4, \text{Corollary 3.8}].$  (The notation in the last sentence is from [11].) We have posed in [4] the following question: Does  $Sp(S, \mathcal{H}) \supset Sp(N, \mathcal{H})$ ? In this paper we give an affirmative answer where S is doubly commuting. Using a result of Janas we also prove that  $Sp(S, \mathcal{H}) \subset p.c.h.(Sp(N, \mathcal{H}))$ . Our proof is based on a theorem of Bram's on the commutant of the  $C^*$ -algebra generated by a subnormal operator, a basic estimate for the left spectrum of an n-tuple, the functional calculus for normal n-tuples and our characterization of Sp for doubly commuting n-tuples of hyponormal operators (as  $\sigma_r$ ).

2. A basic fact about the left spectrum. Let  $T = (T_1, \ldots, T_n)$  be an *n*-tuple (not necessarily commuting) of operators  $\mathcal{K}$  and  $\sigma_i(T)$  be the left spectrum of T, that is,

$$\sigma_l(T) = \left\{ \lambda \in \mathbb{C}^n \colon \sum_{i=1}^n (T_i - \lambda_i)^* (T_i - \lambda_i) \text{ is not invertible} \right\}.$$

Let

$$\delta(T) = \inf \left\{ \|Tx\| = \left( \sum_{i=1}^{n} \|T_i x\|^2 \right)^{1/2} : \|x\| = 1 \right\}$$

and

$$m_l(T) = \inf \left\{ |\lambda| = \left( \sum_{i=1}^n |\lambda_i|^2 \right)^{1/2} : \lambda \in \sigma_l(T) \right\}.$$

The following lemma is probably well known among the specialists. We include a proof for the sake of completeness (see [10] for a different proof).

LEMMA 1. For an arbitrary n-tuple T,  $m_l(T) > \delta(T)$ .

PROOF. Let  $\lambda \in \mathbb{C}^n$  and  $x \in \mathcal{H}$ , ||x|| = 1. Then

$$\sum_{i=1}^{n} \|(T_i - \lambda_i)x\|^2 = \sum_{i=1}^{n} \|T_i x\|^2 + \sum_{i=1}^{n} |\lambda_i|^2 - 2\sum_{i=1}^{n} \operatorname{Re}(T_i x, \lambda_i x)$$

and

$$\left| \sum_{i=1}^{n} \operatorname{Re}(T_{i}x, \lambda_{i}x) \right| \leq \sum_{i=1}^{n} |\lambda_{i}| \|T_{i}x\| \leq \left( \sum_{i=1}^{n} |\lambda_{i}|^{2} \right)^{1/2} \left( \sum_{i=1}^{n} \|T_{i}x\|^{2} \right)^{1/2}.$$

Thus,

$$\sum_{i=1}^{n} \|(T_i - \lambda_i)x\|^2 > \left[ \left( \sum_{i=1}^{n} \|T_i x\|^2 \right)^{1/2} - \left( \sum_{i=1}^{n} |\lambda_i|^2 \right)^{1/2} \right]^2.$$

Therefore, if  $|\lambda| < \delta(T)$  then  $\sum_{i=1}^{n} ||(T_i - \lambda_i)x||^2 > (\delta(T) - |\lambda|)^2$ , so that  $\lambda \notin \sigma_i(T)$ , from which the result follows.

LEMMA 2. Let N be a commuting n-tuple of normal operators. Then  $m_i(N) = \delta(N)$ .

PROOF.  $C^*(N_1, \ldots, N_n) \cong C(\sigma_l(N))$ .

## 3. Bram's commutant theorem.

LEMMA 3 (THEOREM 8 IN [2]; SEE ALSO [3, CHAPTER IV]). Let S be a subnormal operator on  $\mathcal{K}$  with minimal normal extension N on  $\mathcal{K} \supset \mathcal{K}$ . Let  $C^*(N)'$ ,  $C^*(S)'$ and C\*(P)' denote the commutants of the C\*-algebras generated by N, S and the projection P of  $\mathcal{K}$  onto  $\mathcal{K}$   $(P = P_{\mathcal{K}})$ . The map

$$C^*(N)' \cap C^*(P)' \xrightarrow{\Phi} C^*(S)', \quad T \to T|_{\mathfrak{R}},$$

is an isometric \*-isomorphism. Moreover, if  $Q \in C^*(S)'$  is a projection, then  $\Phi^{-1}(Q)$ is the projection on  $\mathcal{K}$  whose range is the closed linear span of the family  $\{N^{*n}x:$  $x \in Q \mathcal{H}, n > 0$ , so that  $N|_{\Phi^{-1}(Q)}$  is the minimal normal extension of  $S|_{Q}$ .

4. The main result. The following lemma is the keystone for our proof of the spectral inclusion.

LEMMA 4. Let S be a subnormal operator on  $\Re$  with minimal normal extension N on  $\mathfrak{K} \supset \mathfrak{K}$ . Let H be a positive operator in  $C^*(S)'$  and  $K = \Phi^{-1}(H)$  the (positive) operator given by Bram's theorem. Assume that  $0 \notin \sigma_r(S, H)$ . Then  $0 \notin \sigma_r(N, \mathcal{K})$ .

PROOF. By definition of  $\sigma_r$ , we know that  $SS^* + H^2$  is invertible, say  $SS^* + H^2$  $> 3\varepsilon$  for some  $\varepsilon > 0$ . Let the positive numbers  $t_k$  and projections  $Q_k \in C^*(S)'$ (k = 1, ..., m) be chosen so that

- (i)  $\sum_{k=1}^{m} Q_k = I,$
- (ii)  $Q_k Q_l = 0$  if  $k \neq l$ , and (iii)  $||H^2 \sum_{k=1}^m t_k^2 Q_k|| < \varepsilon$ .

Then

$$SS^* + \sum_{k=1}^m t_k^2 Q_k \ge 2\varepsilon.$$

Since the ranges of the  $Q_k$ 's reduce S (all k), are pairwise orthogonal and span  $\mathcal{K}$ , we can define  $S_k = S|_{Q_k \mathcal{K}}$  acting on  $Q_k \mathcal{K}$  and write (\*) as

$$\bigoplus_{k=1}^{m} \left( S_k S_k^* + t_k^2 \right) \ge 2\varepsilon.$$

Thus, for each k,  $S_k S_k^* + t_k^2 > 2\varepsilon$ , or  $||S_k^* x||^2 + t_k^2 > 2\varepsilon$ ,  $x \in Q_k \mathcal{H}$ , ||x|| = 1. In the notation of Lemma 1 this is  $\delta(S_k^*, t_k) > \sqrt{2\varepsilon}$ , so that  $m_l(S_k^*, t_k) > \sqrt{2\varepsilon}$ , too.

Now, by the projection property for the left spectrum,

$$\sigma_l(S_k^*, t_k) = \sigma_l(S_k^*) \times \{t_k\} = \overline{\sigma_r(S_k)} \times \{t_k\}$$

(the horizontal bar denoting complex conjugation). Of course,  $\sigma_r(S_k) = \sigma(S_k)$ , because  $S_k$  is subnormal. Then

$$\sigma_l(S_k^*, t_k) = \overline{\sigma(S_k)} \times \{t_k\} \supset \overline{\sigma(N_k)} \times \{t_k\},$$

by the spectral inclusion theorem for subnormal operators and the fact that  $N_k = N|_{\Phi^{-1}(Q_k)\mathfrak{R}}$  is the minimal normal extension of  $S_k$ . Therefore,  $m_l(N_k, t_k) > m_l(S_k^*, t_k) > \sqrt{2\varepsilon}$ . By Lemma 2, however,  $\delta(N_k, t_k) = m_l(N_k, t_k)$ , so that  $||N_k x||^2 + t_k^2 > 2\varepsilon$ ,  $x \in \Phi^{-1}(Q_k)\mathfrak{R}$ , ||x|| = 1.

Therefore  $\bigoplus_{k=1}^{m} (N_k^* N_k + t_k^2) > 2\varepsilon$ , or

(\*\*) 
$$N^*N + \sum_{k=1}^{m} t_k^2 \Phi^{-1}(Q_k) > 2\varepsilon.$$

From (iii) above and the fact that  $\Phi$  is an isometry, we get

$$\left\|K^2 - \sum_{k=1}^m t_k^2 \Phi^{-1}(Q_k)\right\| < \varepsilon.$$

This last equation combined with (\*\*) gives  $N^*N + K^2 \ge \varepsilon$ , as desired.

5. The spectral inclusion theorem. We need one more lemma before we can prove our theorem.

LEMMA 5 (COROLLARY 3.8 IN [4]). Let  $T = (T_1, \ldots, T_n)$  be a doubly commuting n-tuple of hyponormal operators on  $\mathcal{K}$ . Then  $Sp(T, \mathcal{K}) = \sigma_r(T)$ .

THEOREM 1 (SPECTRAL INCLUSION). Let  $S = (S_1, \ldots, S_n)$  be a doubly commuting subnormal n-tuple on  $\mathcal{K}$  with minimal normal extension  $N = (N_1, \ldots, N_n)$  on  $\mathcal{K} \supset \mathcal{K}$ . Then  $Sp(S, \mathcal{K}) \supset Sp(N, \mathcal{K})$ .

PROOF. Assume  $n \ge 2$ . As in the one-variable case, it is enough to show that  $0 \notin \operatorname{Sp}(S, \mathcal{H})$  implies  $0 \notin \operatorname{Sp}(N, \mathcal{H})$ . Now, if  $0 \notin \operatorname{Sp}(S, \mathcal{H})$  and  $H = (\sum_{i=2}^n S_i S_i^*)^{1/2}$ , then  $(S_1, H)$  is right invertible. Let  $T_1^{(1)} = \operatorname{m.n.e.}(S_1)$  acting on  $\mathcal{H}^{(1)} \subset \mathcal{H}$  and  $\Phi_1 \colon C^*(T_1^{(1)})' \cap C^*(P_{\mathcal{H}})' \to C^*(S_1)'$  be Bram's isomorphism. Let  $T_i^{(1)} = \Phi_1^{-1}(S_i)$ ,  $i = 2, \ldots, n$ . Notice that  $\Phi_1^{-1}(H) = (\sum_{i=2}^n T_i^{(i)} T_i^{(1)*})^{1/2}$  and that each  $T_i^{(1)}$  is subnormal; actually,  $T_i^{(1)} = N_i|_{\mathcal{H}^{(1)}}$ . By Lemma 4,  $(T_1^{(1)}, \Phi_1^{-1}(H))$  is right invertible, so that  $T^{(1)} = (T_1^{(1)}, \ldots, T_n^{(1)})$  is right invertible, or  $0 \notin \operatorname{Sp}(T^{(1)}, \mathcal{H}^{(1)})$ , by Lemma 5.

We can now extend  $T_2^{(1)}$  to its minimal norm extension  $T_2^{(2)}$  on  $\mathfrak{R}^{(2)} \subset \mathfrak{R}$  and repeat the argument so that  $0 \notin \operatorname{Sp}(T^{(2)}, \mathfrak{R}^{(2)})$ . We can continue this process until  $T_n^{(n-1)}$  has been extended. Finally, it is clear that  $\mathfrak{R}^{(n)} = \mathfrak{R}$  and  $T^{(n)} = N$ , so that  $0 \notin \operatorname{Sp}(N, \mathfrak{R})$ , as desired.

REMARK. With the notation as in the preceding proof, notice that we actually proved that

$$\operatorname{Sp}(N, \mathfrak{A}) \subset \operatorname{Sp}(T^{(n-1)}, \mathfrak{R}^{(n-1)}) \subset \cdots \subset \operatorname{Sp}(T^{(1)}, \mathfrak{R}^{(1)}) \subset \operatorname{Sp}(S, \mathfrak{R}).$$

THEOREM 2. Let  $S = (S_1, \ldots, S_n)$  be a subnormal n-tuple on  $\mathfrak{R}$  (not necessarily doubly commuting) and  $N = (N_1, \ldots, N_n)$  be its minimal normal extension acting on  $\mathfrak{R} \supset \mathfrak{R}$ . Then  $Sp(S, \mathfrak{R}) \subset p.c.h.(Sp(N, \mathfrak{R}))$ .

734 R. E. CURTO

PROOF (SEE JANAS [7, COROLLARY TO THEOREM 5]). Let  $\lambda = (\lambda_1, \ldots, \lambda_n) \in \operatorname{Sp}(S, \mathcal{K})$  and  $P(z_1, \ldots, z_n)$  be a polynomial. Then  $P(\lambda) \in P(\operatorname{Sp}(S, \mathcal{K})) = \operatorname{Sp}(P(S), \mathcal{K})$ , by the Spectral Mapping Theorem for Taylor spectrum [13, Theorem 4.8], so that

$$|P(\lambda)| \le \sup\{|z|: z \in \sigma(P(S))\} = ||P(S)|| \le ||P(N)||$$
  
= \sup\{|z|: z \in \sigma(P(N))\} = \sup\{|P(z)|: z \in \Sp(N, \Kappa)\}.

Thus  $\lambda \in \text{p.c.h.}(\text{Sp}(N, \mathcal{K}))$ .

COROLLARY. Let S be a doubly commuting subnormal n-tuple on  $\mathfrak{R}$  with minimal normal extension N on  $\mathfrak{R} \supset \mathfrak{R}$ . Assume that  $\operatorname{Sp}(S, \mathfrak{R})$  is polynomially convex. Then  $\operatorname{Sp}(S, \mathfrak{R}) = p.c.h.(\operatorname{Sp}(N, \mathfrak{R}))$ .

ACKNOWLEDGEMENT. The author wishes to thank J. Bunce and N. Salinas for many helpful conversations. This paper was written while the author was at the University of Kansas.

## REFERENCES

- 1. M. B. Abrahamse, Commuting subnormal operators, Illinois J. Math. 22 (1978), 171-176.
- 2. J. Bram, Subnormal operators, Duke Math. J. 22 (1975), 75-94.
- 3. J. Conway, Notes on operator theory (preliminary version).
- 4. R. E. Curto, Fredholm and invertible n-tuples of operators. The deformation problem, Trans. Amer. Math. Soc. 266 (1981), 129-159.
  - 5. P. R. Halmos, Spectra and spectral manifolds, Ann. Soc. Polon. Math. 25 (1952), 43-49.
- 6. T. Ito, On the commutative family of subnormal operators, J. Fac. Sci. Hokkaido Univ. Ser. I. 14 (1958), 1-15.
- 7. J. Janas, Lifting of commutant of subnormal operators and spectral inclusion theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 6 (1978), 513-520.
- 8. A. Lubin, A subnormal semigroup without normal extension, Proc. Amer. Math. Soc. 68 (1978), 176-178.
- 9. \_\_\_\_\_, Extensions of commuting subnormal operators, Lecture Notes in Math., vol. 693, Springer-Verlag, Berlin and New York, 1978, pp. 115-120.
  - 10. N. Salinas, Quasitriangular extensions and problems on joint quasitriangularity (preprint).
  - 11. Z. Słodkowdki, An infinite family of joint spectra, Studia Math. 61 (1977), 239-255.
  - 12. J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191.
- 13. \_\_\_\_\_, The analytic functional calculus for several commuting operators, Acta Math. 125 (1970), 1-38.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KANSAS, LAWRENCE, KANSAS 66045

Current address: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242