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SPECTRAL INCLUSION FOR DOUBLY COMMUTING

SUBNORMAL «-TUPLES

RAUL E. CURTO

Abstract. Let S = (S,,. . ., Sn) be a doubly commuting n-tuple of subnormal

operators on a Hilbert space DC and N = (JV,.N„) be its minimal normal

extension acting on a Hilbert space DC o DC. We show that Sp(S, DC) D Sp(N, DC)

and Sp(S, DC) C p.c.h.(Sp(JV, DC)), where Sp denotes Taylor spectrum and p.c.h.

polynomially convex hull.

1. Introduction. Let S be a subnormal operator on a Hilbert space % and N be

its minimal normal extension to a Hilbert space % D %. A well-known result of

Halmos [5] asserts that o(S) 3 o(N), where a denotes spectrum. Bram then proved

in [2] that o(S) c p.c.h.(o(N)), the polynomially convex huh of o(N). (He actually

proved more: if U is any bounded component of C \ o(N), then U n o(S) = 0 or

U E o(S).)

The question arises as to whether the spectral inclusion holds for commuting

«-tuples S = (Sx, . . ., S„) of subnormal operators on %. A first comment is in

order: not every such «-tuple has a commuting normal extension, i.e., it is not

always possible to find a commuting «-tuple N = (Nx, . . . , Nn) of normal opera-

tors on a Hilbert space % D % such that N¡% c % and A^l^ = S¡ for all

/ = 1, . . ., « (see [8] for an example). There are a number of conditions that

guarantee the existence of such an extension (see for instance [1, 6, 7 and 9]). We

shall call the «-tuple S subnormal in case it admits a commuting normal extension.

It follows from Bram's paper [2] (combining the corollary on p. 88 with Theorem 8)

that any doubly commuting «-tuple S = (Sx, . . . , S„) (i.e., S¡Sj = SjS¡ for ah i,j

and S¡S* = S*S¡ for i ¥=j) of subnormal operators is subnormal. (Ito [6] has

extended this further.) Also, it is clear that a subnormal «-tuple has a unique, up to

isometric isomorphism, minimal normal extension. The «-tuples to be considered

are, therefore, the subnormal ones. We must now agree on the right notion of joint

spectrum. First, we need some notation. For an «-tuple T = (Tx, . . . , Tn) of

operators on %, let or(T) denote the right spectrum of T, that is, o£T) = {X EC:

2?_,(7| - A,)(7^ — X,)* is not invertible}. If T is commuting and & is a Banach

algebra containing the 7¡'s in its center, let o<¡£T) and Sp(T, %) denote the spectra

of Twith respect to & and %, respectively, i.e., a¿T) = {X E C: 2"_,(7;. - \i)Ai

= 7 cannot be solved for A¡ E &}. (For a definition of Sp see [4 or 12].)
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Janas has shown in [7] that if S is subnormal with minimal normal extension N

and £ is a maximal abelian Banach algebra containing the 5,'s, then o^S) d

o(N). (As it turns out, there is universal agreement on the right notion of spectrum

for a normal «-tuple, since or(N) = Sp(N, DC) = oc^N)(N) = oB(N) for any

abelian C*-algebra B containing the N¡'s.) It is a result of Taylor [12, Lemma 2.1]

that Sp(T, DC) c o^T) for any Banach algebra & whose center contains the 77s,

so that Sp(S, DC) d Sp(Af, DC) is perhaps the appropriate inclusion to study. One

could look for joint spectra smaller than Sp, like those considered by Slodkowski

[11]. There are easy examples that show that ovk (k < n) will not do; on the other

hand, oso = Sp for a doubly commuting subnormal «-tuple [4, Corollary 3.8]. (The

notation in the last sentence is from [11].) We have posed in [4] the following

question: Does Sp(S, DC) D Sp(N, DC)? In this paper we give an affirmative answer

where S is doubly commuting. Using a result of Janas we also prove that

Sp(S, DC) c p.c.h.(Sp(A^, DC)). Our proof is based on a theorem of Bram's on the

commutant of the C*-algebra generated by a subnormal operator, a basic estimate

for the left spectrum of an «-tuple, the functional calculus for normal «-tuples and

our characterization of Sp for doubly commuting «-tuples of hyponormal operators

(as rr *>

2. A basic fact about the left spectrum. Let T = (Tx, . . ., Tn) be an «-tuple (not

necessarily commuting) of operators DC and o,(T) be the left spectrum of T, that is,

o,(T) = ¡X E C:  ¿ (T, - Xi)*(Ti - \) is not invertible  .
t ■ i « 1 J

Let

Í / " \1/2 1
«(r)-inf ||rx|| = ̂ 2ll^ll2J   :IWI = ij

and

Í /  2        \'/2 1
m,(r) = inf   |X|=    2|\|2      :XEo,(T)   .

I Vi-i      / J

The following lemma is probably well known among the specialists. We include

a proof for the sake of completeness (see [10] for a different proof).

Lemma 1. For an arbitrary n-tuple T, m¡(T) > 8(T).

Proof. Let X e C and x E DC, ||x|| = 1. Then

S 11(7;. - A,.)x||2 = i ||T;.x||2 + ¿ ftp - 2 ¿ Re^x, \x)
1=1 /=i 1=1 1-1

ana

1/2/    n \l/2

2Re(7;x,A,.x)
1 = 1

< |j\l 11^*11 <(¿J\I2)' (¿ii^ii2)
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Thus,

,1/2        In \1/212

2 ikt;.-\.)x||2> (¿ll^ll2)    -(¿M2)

Therefore, if \X\ < 8(T) then 27«,IKT, - \)x||2 > (S(7) - |a|)2, so that X E o,(T),
from which the result follows.

Lemma 2. Le/ N be a commuting n-tuple of normal operators. Then m,(N) = 8(N).

Proof. C*(Af„ ..., HH) m C(o,(N)).

3. Bram's commutant theorem.

Lemma 3 (Theorem 8 in [2]; see also [3, Chapter IV]). Let S be a subnormal

operator on DC with minimal normal extension N on DC D DC. Let C*(N)', C*(S)'

and C*(P)' denote the commutants of the C*-algebras generated by N, S and the

projection Pof% onto % (P = P%). The map

c*(n)' n c*(pyX c*(sy,     r-> t\%,

is an isometric *-isomorphism. Moreover, if Q E C*(S)' is a projection, then <&~l(Q)

is the projection on DC whose range is the closed linear span of the family {N*"x:

x E Q%, « > 0), so that Af |*-i(ß) is the minimal normal extension of S\q.

4. The main result. The following lemma is the keystone for our proof of the

spectral inclusion.

Lemma 4. Let S be a subnormal operator on % with minimal normal extension N

on DC D DC. Let 77 be a positive operator in C*(S)' and K = $_1(77) the (positive)

operator given by Bram's theorem. Assume that 0 E or(S, 77). 7712« 0 E or(N, DC).

Proof. By definition of or, we know that SS* + 772 is in vertible, say SS* + 772

> 3e for some e > 0. Let the positive numbers tk and projections Qk E C*(S)'

(k = 1, . . . , m) be chosen so that

(i)^.,e* = /,
(ü)QkQi = 0iîk=£l, and

(iii)!^2-^-,'2^!!^-

Then
m

(*) SS* +  S tlQk > 2e.
k=\

Since the ranges of the Qk's reduce S (all k), are pairwise orthogonal and span DC,

we can define Sk = Slg^ acung on Ô*DC and write (*) as

m

© (SkS^ + i2) > 2e.
k = l

Thus, for each k, SkS¿ + t2k > 2e, or ||S¿x||2 + t\ > 2e, x E Qk%, \\x\\ = 1. In

the notation of Lemma 1 this is 8(Sk, tk) > Vie , so that m/(Sk, tk) > V2e , too.

Now, by the projection property for the left spectrum,

o,(St, tk) = o,(St) X {tk} = or(Sk) X {tk}
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(the horizontal bar denoting complex conjugation). Of course, or(Sk) = o(Sk),

because Sk is subnormal. Then

«¿Sí, tk) = o(Sk) X {tk} D o(Nk) X{tk),

by the spectral inclusion theorem for subnormal operators and the fact that

Nk = ^\i>-'iQk)% 1S me rnhiimal normal extension of Sk. Therefore, mj(Nk, tk) >

m/S£, tk) > V2e . By Lemma 2, however, 8(Nk, tk) = m,(Nk, tk), so that ||TV*x||2 +

t2>2e,xE<î>-x(Qk)%,\\x\\= 1.

Therefore ®^_x(N*Nk + fy > 2e, or

(•*) N*N + 2 t2®-x(Qk) > 2e.
k=l

From (iii) above and the fact that $ is an isometry, we get

*2 - 2 £*-•(&)
*=1

<e.

This last equation combined with (**) gives N*N + K2 > e, as desired.

5. The spectral inclusion theorem. We need one more lemma before we can prove

our theorem.

Lemma 5 (Corollary 3.8 in [4]). Let T = (Tx, . . ., T„) be a doubly commuting

n-tuple of hyponormal operators on DC. 77ie« Sp(r, DC) = or(T).

Theorem 1 (spectral inclusion). Let S = (Sx, . . ., S„) be a doubly commuting

subnormal n-tuple on DC with minimal normal extension TV = (.A/,, . . ., TV„) on

DC D DC. 77ie« Sp(S, DC) D Sp(TV, DC).

Proof. Assume « > 2. As in the one-variable case, it is enough to show that

0 E Sp(5, DC) implies 0 E Sp(N, DC). Now, if 0 E Sp(S, DC) and 77 =

(2?_2 S¡S?)X/2, then (Sx, 77) is right invertible. Let 7^ = m.n.e.(5,) acting on

DC™ c DC and *,: C*(TXW)' n C*(P^' -* C*(SX)' be Bram's isomorphism. Let

Jfi = Q¡l(S,), i = 2,...,n. Notice that ®XX(H) = (2?_2 T^xyTp*)x/2 and that

each 7;(I> is subnormal; actually, Tfl) = TV,.^,,. By Lemma 4, (Tf\ 4>7'(77)) is right

invertible, so that Tm = (T[x\ . . . , r„(1)) is right invertible, or 0 E Sp^1*, DC*0),

by Lemma 5.

We can now extend T2m to its minimal norm extension 7^2) on D(?2) c DC and

repeat the argument so that 0 E Sp(T(2>, D(J2)). We can continue this process until

T^"~X) has been extended. Finally, it is clear that DC00 = DC and T(n) = TV, so that

0 E Sp(TV, DC), as desired.

Remark. With the notation as in the preceding proof, notice that we actually

proved that

Sp(TV, DC) c Sp^"-1', DC*-") c • • • c Sp(r<'>, DC(1)) c Sp(5, DC).

Theorem 2. Let S = (Sx, . . . , S„) be a subnormal n-tuple on % (not necessarily

doubly commuting) and TV = (TV,, . . . , TV„) be its minimal normal extension acting on

DC d DC. 77i<?« Sp(S, DC) Ep.c.h.(Sp(N, DC)).
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Proof (see Janas [7, Corollary to Theorem 5]). Let X = (Xx,... ,\) E

Sp(S, DC) and P(zx, . . . , zn) be a polynomial. Then P(X) E P(Sp(S, DC)) =

Sp(P(S), DC), by the Spectral Mapping Theorem for Taylor spectrum [13, Theorem

4.8], so that

|7>(A)| < sup{|z|:z E o(P(S))} = ||7>(S)|| < ||7>(TV)||

= sup{|z|: z E o(P(N))} = sup{|P(z)|: z E Sp(TV, DC)}.

Thus X E p.c.h.(Sp(TV, DC)).

Corollary. Let S be a doubly commuting subnormal n-tuple on % with minimal

normal extension TV on DC D DC. Assume that Sp(5, DC) is polynomially convex. Then

Sp(5, %) = p.c.h.(Sp(N, DC)).
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