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ON WEAK* CONTINUOUS OPERATORS ON ® (%)

ROBERT E. WEBER1

Abstract. If A is a weak* continuous bounded linear operator on ® (DC) that fixes

the ideal of compact operators DC and Ag and S are the induced maps on DC and

® {%)/% then it is shown that A has closed range, has dense range, is bounded

below, or is onto if and only if both \ and S have the same property. These results

are then applied to the operator X -* AXB.

1. Introduction. We show that if A is a weak* continuous bounded linear operator

on %(%) that fixes the ideal of compact operators % and, An and 8 aie the

induced maps on % and '$(%)/% then A has dense range, closed range, is

bounded below, or is onto if and only if both An and 8 have the same property.

These results are then applied to the operator X —» AXB.

2. Notation. Let % denote a separable infinite dimensional Hilbert space, % the

ideal of compact operators on % and &(%) the Calkin algebra <$>(%)/%. Let A:

•35 (%) -» % (%) denote a weak* continuous bounded linear operator such that

A(9C) E %. Also let A,, denote the restriction of A to % and let 8: 6(%) -» &(%)

be the operator defined by 8(U.(X)) = ll(ä(X)) for X E%(%) where II: <&(%)

-> Q(%) is the natural projection.

Let 9" be the ideal of trace-class operators with norm equal to the sum of the

eigenvalues of (T*T)X/2. As Banach spaces, 9" can be identified with the conjugate

space of the ideal % by means of the linear isometry T—> fr where ^K) = tr(KT)

for K E %. Moreover, <S(3C) is the conjugate space of "3". The weak* (or

ultraweakly) continuous linear functionals on © (%) are those of the form fT for

some rel The isometry T -> f T is an embedding of 5 into % (%)* and % (%)*

is the direct sum ?T © %° where %° consists of those bounded linear functionals

on % (%) that annihilate the compact operators. Thus each f E Q (%)* has the

form f = f j- + f0 where fT is induced by a trace-class operator T and f0 E 5C° (see

[2])-
For f0 E 9C° define the linear functional f0 on G(%) by 1q(I1(X)) = UX) for

X E $ (%). Then f0 -> f0 is a hnear isometry from 9C° onto G(%)*.

Since Aq: % -+ %, then A*: 3" ̂ > ?T and A**: $(SC) -+ % (%). Since A is

assumed to be weak* continuous then A** = A.
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Remark. The set of operators which satisfy the conditions imposed on A include

operators of the form X —> AX — XB which have recently been investigated by

Fialkow [3], [4], and [5] and more generally those of the form X -> A XXBX + A2XB2

+ • • • +AnXB„ where A¡, B¡ E 55 (%) for * = 1, ...,«. In fact the set of opera-

tors which satisfy these conditions is exactly the set of operators on 5J (%) of the

form A = A** where An is a bounded operator on %.

For a bounded operator T on a Banach space, let o(T), oJ^T) = (À: T — X is not

onto}, and ow(T) = {X: T — X is not bounded below} denote the spectrum, defect

spectrum, and approximate point spectrum of T respectively. Also let <3l(7T) denote

the range of T and 9l(T) the null space of T respectively. Unless otherwise stated,

the topology of 55 (%) is the norm topology.

For an operator A E 55 (%), let AA denote the derivation generated by A defined

by äA(X) = AX - XA for X E %(%).

3. We begin with a basic relationship between A and \ © 8.

Lemma I. If $ is the bounded linear operator defined on 55 (%)* by 4>(fr -I- f0) =

fr + f0, then <J> is an isometry onto %* + Q(%)* and (Aq © 5)*$ = Í»A*.

Proof. $ is the direct sum of two isometries and therefore is an isometry onto its

range, which is %* © &(%)* by earher remarks.

As first noticed by J. P. Williams [12], the annihilator of the range of a derivation

on 55 (%) splits into the direct sum of its parts in 5C° and 'ö. That this is true for

the more general operator A is a consequence of Lemma 1.

Lemma 2. «31(A)0 = 9l(A*) © 51(A)0 n 5C°.

Proof. By Lemma 1,

-31(A)0 = 9l(A*) = <r'(9l(An © 8*))

= <r'(9l(A5) © 9L(S*)) = 9l(A*) © <¡>-x(%(8*)).

If f - f0 + f¿ G 51(A)0 = 9L(A*) then 0 = $A*(f) = f^ © A*f0. Hence A*(fJ =
0 and so both f0 and fr = f - f0 belong to 51(A)0.

We are now prepared to consider several properties of the range of A. We first

consider conditions on A in order for the range to be dense in the weak* topology.

Theorem 1. The following are equivalent:

(a) 51(A) is weak* dense in <$> (%).

(b) 51 (A,,) is dense in %.

(c) % E 51(A)-.

(d) 9l(A*) = {0}.

Proof. The equivalence of (a) and (d) follows from the general duality fact that

A£ is one-to-one if and only if 5t(A**) = 51(A) is weak* dense (see [10, p. 94]). The

equivalence of (b) and (d) follows from the fact that A* is one-to-one if and only if

5t(An) is dense. If % E 51(A)", then 51(A)0 E 9C° and therefore by Lemma 2,

9l(AJ) = {0}. Hence (c) implies (d). That (b) implies (c) is obvious.

We now consider density in the norm topology.
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Theorem 2. 51(A) is dense if and only if both 5t(An) and 51(5) are dense.

Proof. 51(A) is dense if and only if A* is one-to-one. By Lemma 1, this is

equivalent to (A,, © 8)* being one-to-one and hence to 51 (Aq © 8) being dense.

However, 5t(An © 5) is dense if and only if 5l(An) and 51(5) are both dense.

We now consider conditions under which the range of A is closed.

Recall that for an operator T on a Banach space, 51(7") is closed if and only if

9i(T*) is closed (see [10, p. 96]).

Theorem 3. The following are equivalent.

(a) 51(A) is closed.

(b) 5l(An) is closed.

(c) 51 (Aq) and 51(5) are both closed.

Proof. 51 (Aq) is closed if and only if 51 (A*) is closed and hence if and only if

51(A) = 51 (A**) is closed. Therefore (a) and (b) are equivalent. Also 51(A) is closed

if and only if 51 (A*) is closed and therefore, by Lemma 1, if and only if 51 (A£) and

51(5*), and therefore 51 (Aq) and 51(5) are both closed.

This theorem (as well as the next two) has an immediate corollary which displays

an interesting fact concerning the relationship of operators on 55 (%) with the

Calkin algebra.

Corollary. If 5t(An) is closed then 51(5) is closed.

The converse is false as can be seen by considering left multiphcation by a

one-one compact operator.

4. We now consider the relationship between the spectra of A, Aq, and 5. Recall

that for a bounded operator T on a Banach space, oJ(T) = o„(T*) and ow(T) =

oj(T*) (see [10, pp. 94-97]).

Theorem 4. The following are equivalent:

(a) A is onto.

(b) Aq is onto.

(c) A0 and 8 are both onto.

(d) % E 51(A).

Proof. Since o-d(An) = o-„(A^) = od(A**) = od(&) then (a) and (b) are equivalent.

Also by Lemma 1, A* is bounded below if and only if (Aq © 5)* is bounded below

and hence if and only if A* and 5* are both bounded below. However, this is

equivalent to A„ and 5 both being onto. Therefore (a) and (c) are equivalent. To

show that (d) implies (a), assume that % c 51(A). Then for A G 55 (%) and AA the

derivation generated by A, 5t(A/)|gc) E 51(A) and since (AJ^** = A^, then 5t(A^)

E 51(A) (see [8, Corollary 1.2]). Therefore, since every operator is the sum of two

commutators (Halmos [7], in fact there are isometries U and V with 5l(A£/) +

5l(AK) = 55 (%), Weber [11]) A is onto.

Corollary. od(8) c oJ^Aq) = o^A).
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Proof. If An is onto then by the theorem both Aq and 5 are onto and since the

relationship between A, A,,, and 5 is translation invariant the proof follows.

We have a similar result for the approximate point spectrum. The proof is similar

to that of Theorem 4.

Theorem 5. The following are equivalent:

(a) A is bounded below.

(b) An is bounded below.

(c) An and 8 are both bounded below.

Corollary 1. o„(8) E o„(Aa) = o„(A).

By combining this corollary and the corollary to Theorem 4 we have

Corollary 2. o(8) E o(Aq) = o(A).

Remark 1. Corollary 2 may also be proven directly using the facts that o(T) =

o(T*) and that if A has an inverse A' then 5 has an inverse 8'(m(X)) = m(A'(X)). Or

better, using the isomorphism <I>, it is clear that o(A) = o(A*) = o(A*) u o(8*) =

a(An) U a(5).

Remark 2. Fialkow [3, p. 155] has shown by using the operator X -» AX — XB

that strict containment is possible in the corollaries to Theorems 4 and 5.

5. Examples. Several of the preceding results are generalizations of various

properties of the operator X -» AX — XB on 55 (%) which were observed by L. A.

Fialkow ([3], [4], and [5]). We will apply these results to the operator X -» AXB.

For A, BE 55 (%), let V: ®>(%)^> <$>(%) be the bounded linear operator

defined by T(X) = AXB. Also let T0 be the restrction of T to % and let y be the

operator on C(%) defined by y(w(A')) = m(T(X)) for X E 55 (%). Lumer and

Rosenblum [9] proved that o(T) = o(A)o(B) = {ab: a E o(A) and b E o(B)} and,

Davis and Rosenthal [1] proved that oJT) Ç o^A^^B) and o/T) E oJ(A)o„(B).

The following lemma provides some information concerning the opposite inclu-

sions.

For x, v E %, let x 0 y denote the rank one operator defined by (x <8> v)(z) =

(z,y)x in which case ||x 0y\\ = ||x|| \\y\\.

Lemma 3. (a) 7/0 G o„(A) u o¿(B), then 0 E o„(T).

(b) 7/0 E od(A) u o„(B), then 0 E a^ij).

Proof. If 0 G o„(A) then there exists a sequence of unit vectors {x„} such that

\\AxH\\^0. Therefore \\A(xn 0 xn)B\\ = \\(Ax^0jß*xn)\\ = \\Axn\\ \\B*xn\\ ^0

and T is not bounded below. If 0 G a¿(B) = ov(B*), then by choosing the unit

vectors such that ||fi*x„|| ->0 it again follows that Y is not bounded below. To

establish (b), let 0 G od(A) u o„(B), then either A is not right invertible or B is not

left invertible. In either case AXB ^ I for any A' G 55 (%) and hence T is not onto.

Since T0(K) = AKB for K G %, then TJ: 9" -* ?T is the operator defined by

T*(r) = BTA for all T E $. We next establish a spectral condition under which

TJ is one-to-one.
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In the following we let op(T) and oc(T) = {A: 51(7" — A) is not dense} be the

point and compression spectrum respectively of an operator T on a Banach space.

Lemma 4. T* is one-to-one if and only i/O G oc(A) u op(B).

Proof. Assume 0 £ op(B) and A has dense range. If T is a nonzero trace-class

operator, choose x E % such that Tx = y # 0. Also let {z„} be a sequence in %

such that Az„ -» x. Then TAzn —» v and BTAzn -* By # 0. Therefore BTA ¥= 0 and

Af(r*) = {0}. Conversely if v G % is not the zero vector and either By = 0 or

y±<3l(A)- then 5(v 0y)A = (By) 0 (A*y) = 0. Hence N(T*) ¥= {0}.

Next we consider the density of the range of T.

Recall that the weakly (weak operator topology) continuous linear functionals on

55 (%) are those of the form fF where F is a finite rank operator on %.

I heorem 6. The following are equivalent:

(a) 51(0 » weak* dense in 55 (%).

(b) 51(0 is weakly dense in 55 (%).

(c)<9l(To)isdensein%.

(d) % E 5l(r)-.

(e) 0 g oc(A) u ap(B).

Proof. In view of Theorem 1 and Lemma 4, it is sufficient to show that (b)

implies (a). If 51(0 is not weak* dense then 0 G oc(A) u op(B) and, as in the proof

of Lemma 4, there exists a nonzero finite rank operator F such that BFA = 0.

Therefore ff(AXB) = tr(AXBF) = tr(XBFA) = 0 for all X G 55 (3C) and ft(T) is
not weakly dense.

We now turn to the operator y.

Let oe(t), ore(T), and ole(T) denote the essential spectrum, right essential spec-

trum, and left essential spectrum respectively of an operator T E 55 (%). Also for

A, B G 55 (%), let 9Í and 93 denote the operators on the Calkin algebra defined by

2l(A0 = ÄX and &LX) = XB for X E 55 (%) and f = m(X). Then, as observed by

Fialkow [3], ov(W) = ole(A), <V(») = ore(B), oJW) = are04), and oJSQ) = a/e(5).

Lemma 5. (a) o(y) E oe(A)oe(B).

(b) o (y) E o, (A)o (B).

(c) o*(y) Ç o'e(A)o"e(B).

Proof. Part (a) is due to Lumer and Rosenblum [9, Theorem 5]. Also by a result

of Davis and Rosenthal [1, Theorem 2] o„(y) Ç aff(2t)o„(93) = ole(A)oK(B) and

o¿y) E o^oj®) = ore(A)ole(B).

Recall that if 0 G ole(A)(0 E ore(A)) then there exists an infinite dimensional

projection P such that AP(PA) is compact (see [6, Theorem 4.1]).

Lemma 6. (a) 7/0 G oe(A) u oe(B) then 0 G a(y).

(b) 7/0 G ole(A) u ore(B) then 0 G op(y).

(c) 7/0 G ore(A) u o,e(B) then 0 G a/y).

Proof. If 0 G oe(A) u oe(7i) then there exists an infinite dimensional projection

P such that one of AP, PA, BP, or PB is compact. If AP or PB is compact, then
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y(m(P)) = m(APB) = 0 and y is not one-to-one. Also if PA or BP is compact and

if y(m(X)) = m(AXB) = 7 then P = PÏ = m(PAXB) = m(AXBP) = Ö which again

contradicts the fact that P is infinite dimensional. Hence y is not onto. Parts (b)

and (c) follow by applying the above arguments to the various cases.

Fialkow [5] has shown that for the operator A: X -> AX — XB, 51(5) is dense if

and only if 5 is onto. This is also true for the operator T.

Lemma 7. 51 (y) is dense if and only if y is onto.

Proof. Assume y is not onto and hence 0 G od(y) E on(A)o,e(B). If 0 G o„(A)

then let P be an infinite dimensional projection such that PA is compact. If 5t(y) is

dense then there exists a sequence {Xn} such that AXnB -> 7. Hence Ö = PAXnB

—» P which contradicts the fact that P is infinite dimensional. A similar argument

can be employed if we assume that 0 G ole(B).

With regard to norm density we have the following equivalences.

Theorem 7. The following are equivalent:

(a) 51(0 is dense in 55 (%).

(b) y is onto and 51 (ro) is dense in %.

(c) 0 É ore(A) U oc(A) U 07,(5) U op(B).

Proof. The equivalence of (a) and (b) follows directly from Theorem 2 and

Lemma 7. Also y is onto if and only if 0 <£ oK(A) u ole(B) and $1(Tq) is dense if

and only if N(Ti*) = {0} and hence, by Lemma 4, if and only if 0 £ oc(A) u op(B).

Corollary. 51 (O « dense if and only if T is onto.

Proof. Since

od(A) u aw(B) = ow(A*) U o„(B) = ole(A*) u op(A*) U ole(B) U op(B)

= ore(A) u oc(A) u ou(B) u op(B),

the proof follows from Theorem 7.

We now consider other conditions under which T is onto.

Theorem 8. The following are equivalent:

(a) T is onto.

(b) 5l(r) is dense in 55 (%).

(c) r0 is onto.

(d) y and T0 are both onto.

(e) 51 (O contains all rank-one operators.

(f)0í oM)«¿B)-

Proof. In view of Theorem 4 and Lemma 3, it remains only to show that (e)

implies (a). Therefore assume that T is not onto in which case 0 G od(A)o„(B). If

0 G o„(B) E ole(B) u op(B) and 51 (r) contains all rank-one operators then 0 G

o,e(B). Let {f„} be an orthonormal sequence such that 2||7ifJ|1/2 < oo (see [6]).
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Then

2 \({AXB%, f„)|1/2 < S (\\AXBm ||f„||)1/2

< 2|MAf/2||2ifn||,/2 <||^||1/22||5f„||,/2 < oo

for all X G 55 (%). Since 5l(0 contains ah rank-one operators, then for all

fOC, 2|((f 0 f)f„, Ul'/2 < oo- However

2 l((f 9 f)fn, f„)|,/2 = S |(f, ü (W) |'/2 = 2 |(f„, 01-

Hence if we choose f such that {|(f„, f)|} is not summable, we have a contradiction

and therefore 0 $ o„(B). If we assume 0 G oJ(A) =ov(A*) we can again reach a

contradiction by choosing the orthonormal sequence {f„} such that SH^fJI1/2 <

oo.

Finally, we give conditions under which T is bounded below.

Theorem 9. The following are equivalent:

(a) T is bounded below.

(b) ro is bounded below.

(c) y and T0 are both bounded below.

(d) There exists an M such that ^AXB^ > M\\X\\ for all rank-one operators

X G 55 (%).

(e) 0 É on(A)0d(B).

Proof. In view of Theorem 5, and Lemma 3 it only remains to show that (d)

implies (a). Therefore assume T is not bounded below and hence 0 G oJ^A^J^B).

If 0 G o^A) then for a > 0 choose the unit vector x such that ||ylx|| < e/||5*||.

Then

\\A(x 0 x)By\\ =\\(Ax) 0 (B*x)y\\ =||(v, B*x)Ax\\

<\\y\\ \\B*x\\ \\Ax\\ < || v|| ||S*|| pïji

<||v||a    forallvGOC.

Therefore \\A(x 0 x)B\\ < a and T is not bounded below on rank-one operators.

If 0 G od(B) then a similar argument can be applied to B*.
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