CONTRACTIVE COMMUTANTS AND INVARIANT SUBSPACES

R. L. MOORE

ABSTRACT. Let T be a bounded operator on a Banach space $\mathfrak R$ and let K be a nonzero compact operator. In [1] and [4] it is shown that if λ is a complex number and if $TK = \lambda KT$, then T has a hyperinvariant subspace. In [1], S. Brown goes on to show that if $\mathfrak R$ is reflexive and if $TK = \lambda KT$ and $TB = \mu BT$ for some λ , μ with $|\lambda| \neq 1$ and $(1 - |\mu|)/(1 - |\lambda|) > 0$, then B has an invariant subspace. Below we extend both these results by showing that the entire class of operators satisfying the above conditions on B has an invariant subspace.

Let T be a bounded operator on a Banach space \mathfrak{R} and let K be a nonzero compact operator. In [1] and [4] it is shown that if λ is a complex number and if $TK = \lambda KT$, then T has a hyperinvariant subspace. In [1], S. Brown goes on to show that if \mathfrak{R} is reflexive and if $TK = \lambda KT$ and $TB = \mu BT$ for some λ , μ with $|\lambda| \neq 1$ and $(1 - |\mu|)/(1 - |\lambda|) > 0$, then B has an invariant subspace. In this note we extend both these results by showing that the entire class of operators satisfying the above conditions on B has an invariant subspace.

1. The contractive commutant. Let \mathfrak{X} be an infinite-dimensional Banach space and let $\mathfrak{L}(\mathfrak{X})$ be the algebra of bounded linear operators on \mathfrak{X} . The commutant $\{T\}'$ of an operator T is the algebra of operators B that commute with T. A basic result is the elegant theorem of Lomonosov [5]; the statement below is the distillation by Pearcy and Shields [6].

THEOREM 1.1 (LOMONOSOV). If α is a subalgebra of $\mathcal{L}(\mathfrak{X})$ with no nontrivial invariant subspaces, and if K is any nonzero compact operator, then there is an operator A in α such that 1 is an eigenvalue of AK.

COROLLARY 1.2 (LOMONOSOV). If $\{T\}'$ contains a nonzero compact operator and T is not a scalar multiple of the identity, then $\{T\}'$ has an invariant subspace.

Let $\mathcal{C}_c(T) = \{B \in \mathcal{C}(\mathfrak{K}) \colon TB = \lambda BT \text{ for some complex number } \lambda \text{ with } |\lambda| \leq 1\}$. Notice that $\mathcal{C}_c(T)$ is not an algebra, since it fails to be closed under sums. Let $\{T\}'_c$ be the (nonclosed) algebra generated by $\mathcal{C}_c(T)$. We refer to $\{T\}'_c$ as the contractive commutant of T. Similarly, let $\mathcal{C}_{sc}(T) = \{B \in \mathcal{C}(\mathfrak{K}) \colon TB = \lambda BT \text{ with } |\lambda| < 1\}$ and let $\{T\}'_{sc}$ be the algebra generated by $\mathcal{C}_{sc}(T)$; we call $\{T\}'_{sc}$ the strictly contractive commutant of T. A number of simple facts are listed below.

Received by the editors May 27, 1980 and, in revised form, April 3, 1981. 1980 Mathematics Subject Classification. Primary 47A15; Secondary 47B05.

748 R. L. MOORE

THEOREM 1.3. (i) If A, B are in $\mathcal{C}_c(T)$ (resp. $\mathcal{C}_{sc}(T)$), and if $\mu \in \mathbb{C}$ then μA and AB are in $\mathcal{C}_c(T)$ (resp. $\mathcal{C}_{sc}(T)$).

- (ii) If $A \in \mathcal{C}_c(T)$ and $B \in \mathcal{C}_{sc}(T)$ then BA and AB lie in $\mathcal{C}_{sc}(T)$.
- (iii) If $A \in \mathcal{C}_c(T)$ (resp. $\mathcal{C}_{sc}(T)$) then $T^* \in \mathcal{C}_c(A^*)$ (resp. $\mathcal{C}_{sc}(A^*)$).
- (iv) $\mathcal{C}_c(T)$ is closed in the weak operator topology.

PROOF. (i), (ii), and (iii) are straightforward computations. To prove (iv) we suppose that $\{B_{\alpha}\}$ is a net of operators in $\mathcal{C}_{c}(T)$ and $B_{\alpha} \to B$ weakly. If λ_{α} is chosen so that $TB_{\alpha} = \lambda_{\alpha}B_{\alpha}T$, then $|\lambda_{\alpha}| \le 1$ for all α and thus there is a convergent subnet of $\{\lambda_{\alpha}\}$; without loss of generality we assume that the entire net $\{\lambda_{\alpha}\}$ converges, say to λ . Then TB_{α} converges weakly to TB, TB, TB converges weakly to TB, and the result follows.

LEMMA 1.4. $\{T\}'_c$ (resp. $\{T\}'_{sc}$) consists precisely of finite sums, $\sum_{i=1}^n B_i$, where each B_i lies in $\mathcal{C}_c(T)$ (resp. $\mathcal{C}_{sc}(T)$).

PROOF. $\{T\}'_c$ is the algebra generated by $\mathcal{C}_c(T)$, so clearly every finite sum of operators in $\mathcal{C}_c(T)$ belongs to $\{T\}'_c$. It is easy to check, using 1.3(i), that the collection of finite sums is an algebra, and thus that it is the same as $\{T\}'_c$. The statement for $\{T\}'_{sc}$ follows similarly.

COROLLARY 1.5. If $A \in \{T\}'_c$ and $B \in \{T\}'_{sc}$, then AB and BA lie in $\{T\}'_{sc}$.

PROOF. Use Lemma 1.4 and Theorem 1.3(iii).

The proof of the next result is a slight sharpening of the proof of Theorem 2 of [1].

THEOREM 1.6. (i) If $TB = \lambda BT$ for some complex number λ (not necessarily in the unit disk) then either $|\lambda| = 1$ or TB and BT are quasinilpotent.

- (ii) If $TK = \lambda KT$ where K is compact then either λ is a root of unity or TK and KT are quasinilpotent.
- PROOF. (i) It is well known that the nonzero elements of $\sigma(TB)$ and $\sigma(BT)$ are the same [3, p. 63]. Thus it follows that r(TB) = r(BT), where r(X) denotes the spectral radius of X. Since $TB = \lambda BT$ we also have $r(TB) = |\lambda| r(BT)$ and thus $r(BT) = |\lambda| r(BT)$. Hence either $|\lambda| = 1$ or else r(BT) (and therefore r(TB)) is 0.
- (ii) Suppose $TK = \lambda KT$ and TK and KT are not quasinilpotent. By part (i), $|\lambda| = 1$. Let $0 \neq z \in \sigma(KT)$. Then $\lambda z \in \sigma(TK) = \sigma(KT)$. By induction, $\lambda^n z \in \sigma(KT)$ for all nonnegative integers n. However, KT is compact and its spectrum cannot contain an infinite set of numbers whose absolute values are bounded away from 0. Thus $\{\lambda^n z\}_{n=0}^{\infty}$ is a finite set and λ must be a root of unity.
- 2. Invariant subspaces. The contractive commutant contains the commutant; thus it is less likely that the former should have nontrivial invariant subspaces. The following example shows that $\{T\}'_c$ may indeed be transitive.

EXAMPLE 2.1. Let \mathfrak{X} be a two-dimensional Hilbert space and let T, K_1 and K_2 be defined by

$$T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; \qquad K_1 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; \qquad K_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Then K_1 and K_2 both lie in $\mathcal{C}_c(T)$, but it is easy to see that no subspace is invariant for T, K_1 , and K_2 . Notice that in this case, $\{T\}'_c = \mathcal{C}(\mathfrak{X})$.

For an infinite-dimensional example, let \mathcal{K} be any Hilbert space and let $\mathcal{K} = \mathcal{K} \oplus \mathcal{K}$. Let $T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in \mathcal{L}(\mathcal{K})$. $\mathcal{C}_{\mathcal{C}}(T)$ contains all operators of the form

$$\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}, \qquad \begin{pmatrix} 0 & C \\ 0 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 & 0 \\ D & 0 \end{pmatrix}.$$

Thus $\{T\}'_c = \mathcal{L}(\mathfrak{X})$ in this case as well. Observe that if $\{T\}'_c$ were transitive and not dense in $\mathcal{L}(\mathfrak{X})$ we would have a solution to the transitive algebra problem.

Our central result shows that under certain conditions $\{T\}'_c$ and $\{T\}'_{sc}$ do have invariant subspaces.

THEOREM 2.2. Let T be a nonzero operator in $\mathcal{L}(\mathfrak{K})$. If $\{T\}'_{sc}$ (resp. $\{T\}'_{c}$) contains a nonzero compact operator, then $\{T\}'_{c}$ (resp. $\{T\}'_{sc}$) has a nontrivial invariant subspace.

PROOF. Let $\{T\}'_{sc}$ contain a nonzero compact operator K. Note that ker T is an invariant subspace for $\mathcal{C}_c(T)$ and hence for $\{T\}'_c$; we therefore assume that ker $T = \{0\}$. Suppose that $\{T\}'_c$ is a transitive algebra. Theorem 1.1 guarantees the existence of an operator B in $\{T\}'_c$ and a nonzero vector x such that BKx = x. By Corollary 1.5, $BK \in \{T\}'_{sc}$ and thus there exist $B_1, \ldots, B_n \in \mathcal{C}_{sc}(T)$ such that $\sum_{i=1}^n B_i = BK$. Let $TB_i = \lambda_i B_i T$, where $|\lambda_i| < 1$ for each i. Then $TBK = \sum TB_i = (\sum \lambda_i B_i)T$ and inductively $T^mBK = (\sum_{i=1}^n \lambda_i^m B_i)T^m$ for each positive integer m. Hence $T^mx = T^mBKx = (\sum_{i=1}^n \lambda_i^m B_i)T^mx$. We have assumed that T has trivial kernel and thus $T^mx \neq 0$ for every m, and it follows that 1 lies in the point spectrum of $\sum_{i=1}^n \lambda_i^m B_i$ for every m. However, this would imply that $1 \leq \|\sum_{i=1}^n \lambda_i^m B_i\| \leq \sum_{i=1}^n |\lambda_i|^m \|B_i\|$ for all m, which is obviously impossible since $|\lambda_i| < 1$ for all i. Hence the assumption that $\{T\}'_c$ is transitive must be false.

The proof of the other part of the theorem is virtually identical and is omitted. The corollary is a generalization of Theorem 3 of [1].

COROLLARY 2.3. Suppose that \mathfrak{X} is reflexive and that $TK = \lambda KT$ for K a nonzero compact operator, T nonzero, and $|\lambda| \neq 1$. Let α be the algebra generated by all operators B such that $TB = \mu BT$ for some complex number μ for which $(1 - |\mu|)/(1 - |\lambda|) \geq 0$. Then α has an invariant subspace.

PROOF. The theorem covers the case $|\lambda| < 1$. If $|\lambda| > 1$ then $T^*K^* = \lambda^{-1}K^*T^*$ and $K^* \in \mathcal{C}_c(T^*)$. The theorem then shows that $\{T^*\}_c'$ has an invariant subspace. Note that $\alpha = \{B : B^* \in \{T^*\}_c'\}$. Hence α^* has an invariant subspace, and because of the reflexivity of \mathfrak{X} so does α .

Question. Is it possible to show the existence of an invariant subspace for $\{T\}'_c$ under the weaker assumption that the closure (in some appropriate topology) of $\{T\}'_{sc}$ contains a nonzero compact operator? A reasonable first step might be to show that the weaker condition yields a hyperinvariant subspace for T.

We remark that C. K. Fong [2] has recently obtained some related results concerning common invariant subspaces of T and K, under more general conditions than those discussed here.

750 R. L. MOORE

REFERENCES

- 1. S. Brown, Connections between an operator and a compact operator that yield hyperimvariant subspaces, J. Operator Theory 1 (1979), 117-122.
 - 2. C. K. Fong, A note on common invariant subspaces (to appear).
 - 3. P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N.J., 1967.
- 4. H. W. Kim, R. L. Moore and C. M. Pearcy, A variation of Lomonosov's theorem, J. Operator Theory 2 (1979), 131-140.
- 5. V. I. Lomonosov, On invariant subspaces of families of operators commuting with a completely continuous operator, Funkcional. Anal. i Priložen. 7 (1973), 55-56.
- 6. Carl Pearcy and Allen L. Shields, A survey of the Lomonosov technique in the theory of invariant subspaces, Topics in Operator Theory, Math. Surveys, no. 13, Amer. Math. Soc., Providence, R. I., 1974, pp. 219-229.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA, UNIVERSITY, ALABAMA 35486