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CONTRACTIVE COMMUTANTS AND INVARIANT SUBSPACES

R. L. MOORE

Abstract. Let T be a bounded operator on a Banach space % and let K be a

nonzero compact operator. In [1] and [4] it is shown that if X is a complex number

and if TK = XKT, then T has a hyperinvariant subspace. In [1], S. Brown goes on

to show that if % is reflexive and if TK = XKT and TB = pBT for some X, p with

|X| =?t 1 and (1 — | /i|)/(l - |X|) > 0, then B has an invariant subspace. Below we

extend both these results by showing that the entire class of operators satisfying the

above conditions on B has an invariant subspace.

Let F be a bounded operator on a Banach space % and let K be a nonzero

compact operator. In [1] and [4] it is shown that if X is a complex number and if

TK = XKT, then T has a hyperinvariant subspace. In [1], S. Brown goes on to show

that if % is reflexive and if TK = XKT and TB = pBT for some X, p with |A| ¥= 1

and (1 — | p\)/(\ — |a|) > 0, then B has an invariant subspace. In this note we

extend both these results by showing that the entire class of operators satisfying the

above conditions on B has an invariant subspace.

1. The contractive commutant. Let % be an infinite-dimensional Banach space

and let £(%) be the algebra of bounded linear operators on 9C. The commutant

{ F}' of an operator F is the algebra of operators B that commute with T. A basic

result is the elegant theorem of Lomonosov [5]; the statement below is the

distillation by Pearcy and Shields [6].

Theorem 1.1 (Lomonosov). If a is a subalgebra of £(9C) with no nontrivial

invariant subspaces, and if K is any nonzero compact operator, then there is an

operator A in a such that 1 is an eigenvalue of AK.

Corollary 1.2 (Lomonosov). If { T}' contains a nonzero compact operator and T

is not a scalar multiple of the identity, then { T}' has an invariant subspace.

Let ec(T) = {B E £(%): TB = ÀTiFfor some complex number X with |A| < 1}.

Notice that GC(T) is not an algebra, since it fails to be closed under sums. Let {T}'c

be the (nonclosed) algebra generated by QC(T). We refer to { T}'c as the contractive

commutant of T. Similarly, let QSC(T) = {B E £(%): TB = XTiFwith |X| < 1} and

let {T}'sc be the algebra generated by QSC(T); we call {T}'sc the strictly contractive

commutant of T. A number of simple facts are listed below.
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Theorem 1.3. (i) If A, B are in QC(T) (resp. 6SC(T)), and if p E C then pA and

AB are in GC(T) (resp. GSC(T)).

(ii) If A E GC(T) andB E GSC(T) then BA and AB lie in GSC(T).

(iii) If A £ 6C(T) (resp. ßsc(T)) then T* £ 6C(A*) {resp. ex(A*)).

(iv) QC(T) is closed in the weak operator topology.

Proof, (i), (ii), and (iii) are straightforward computations. To prove (iv) we

suppose that {Ba} is a net of operators in QC(T) and Ba^>B weakly. If Xa is

chosen so that TBa = XaBaT, then |Àa| < 1 for all a and thus there is a convergent

subnet of {Àa}; without loss of generality we assume that the entire net {Xa}

converges, say to X. Then TBa converges weakly to FT?, XaBa T converges weakly to

XBT, and the result follows.

Lemma 1.4. {F}'c (resp. {T}'sc) consists precisely of finite sums, 2"_! B¡, where

each B, lies in GC(T) (resp. GSC(T)).

Proof. {T}'c is the algebra generated by QC(T), so clearly every finite sum of

operators in QC(T) belongs to {F}'c. It is easy to check, using 1.3(i), that the

collection of finite sums is an algebra, and thus that it is the same as {T}'c. The

statement for {T}'sc follows similarly.

Corollary 1.5. If A E {T}'c and B E {T}'sc, then AB and BA lie in {T}'sc.

Proof. Use Lemma 1.4 and Theorem 1.3(iii).

The proof of the next result is a slight sharpening of the proof of Theorem 2 of

I J-

Theorem 1.6. (i) If TB = XBT for some complex number X (not necessarily in the

unit disk) then either \X\ = 1 or TB and BT are quasinilpotent.

(ii) If TK = XKT where K is compact then either X is a root of unity or TK and KT

are quasinilpotent.

Proof, (i) It is well known that the nonzero elements of o(TB) and o(BT) are

the same [3, p. 63]. Thus it follows that r(TB) = r(BT), where r(X) denotes the

spectral radius of X. Since TB = XBT we also have r(TB) = |A|r(7iF) and thus

r(BT) = |A|r(5F). Hence either \X\ = 1 or else r(BT) (and therefore r(TB)) is 0.

(ii) Suppose TK = XKT and TK and KT are not quasinilpotent. By part (i),

|X| = 1. Let 0 ¥=z E o(KT). Then Xz E o(TK) = o(KT). By induction, X"z £

o(KT) for all nonnegative integers n. However, KT is compact and its spectrum

cannot contain an infinite set of numbers whose absolute values are bounded away

from 0. Thus {Â"z}™=0 is a finite set and X must be a root of unity.

2. Invariant subspaces. The contractive commutant contains the commutant; thus

it is less likely that the former should have nontrivial invariant subspaces. The

following example shows that { T}'c may indeed be transitive.

Example 2.1. Let 9C be a two-dimensional Hubert space and let T, Kx and K2 be

defined by
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Then Kx and K2 both lie in GC(T), but it is easy to see that no subspace is invariant

for F, Kx, and K2. Notice that in this case, { T}'c = £(9C).

For an infinite-dimensional example,  let %  be any Hubert space and let

% = % ® %. Let F = (0 _?) E £(9C). 6C(T) contains aU operators of the form

(A     0\        (0    C\        (0     0\
lo   BV     lo   of     \d   or

Thus {F}'c = £(9C) in this case as well. Observe that if {T)'c were transitive and

not dense in £(9C) we would have a solution to the transitive algebra problem.

Our central result shows that under certain conditions {T}'c and {T}'sc do have

invariant subspaces.

Theorem 2.2. Let T be a nonzero operator in £(9C). If {T}'sc (resp. {T}'c)

contains a nonzero compact operator, then {T}'c (resp. (F}'iC) has a nontrivial

invariant subspace.

Proof. Let {T}'sc contain a nonzero compact operator K. Note that ker F is an

invariant subspace for CC(T) and hence for {F}'c; we therefore assume that

ker T = {0}. Suppose that {T}'c is a transitive algebra. Theorem 1.1 guarantees the

existence of an operator B in { T}'c and a nonzero vector x such that BKx = x. By

Corollary 1.5, BK E {T}'sc and thus there exist Bx, . . ., B„ £ 6SC(T) such that

2"_, B; = BK. Let TBi = \BtT, where |\| < 1 for each i. Then TBK = 2 F7i, =
(2 A,£,.)F and inductively TmBK = (2%x \mB¡)Tm for each positive integer m.

Hence Tmx = TmBKx = (2"=1 \mB,)Tmx. We have assumed that F has trivial

kernel and thus Tmx ^ 0 for every m, and it follows that 1 lies in the point

spectrum of 2?=, X¡"B¡ for every m. However, this would imply that 1 <

||2"=1 X¡mB,\\ < 2"=1|A,r \\B¡\\ for all m, which is obviously impossible since |a,| <

1 for all /'. Hence the assumption that { F}'c is transitive must be false.

The proof of the other part of the theorem is virtually identical and is omitted.

The corollary is a generalization of Theorem 3 of [1].

Corollary 2.3. Suppose that 9C is reflexive and that TK = XKT for K a nonzero

compact operator, T nonzero, and |X| ^ 1. Let a be the algebra generated

by all operators B such that TB = pBT for some complex number p for which

(1 — |it|)/(l — |a|) > 0. Then a has an invariant subspace.

Proof. The theorem covers the case |A| < 1. If |X| > 1 then T*K* = A-IAT*F*

and K* E QC(T*). The theorem then shows that {T*}'c has an invariant subspace.

Note that a = {B: B* E {F*}'c}. Hence a* has an invariant subspace, and because

of the reflexivity of % so does a.

Question. Is it possible to show the existence of an invariant subspace for { T}'c

under the weaker assumption that the closure (in some appropriate topology) of

{ T}'sc contains a nonzero compact operator? A reasonable first step might be to

show that the weaker condition yields a hyperinvariant subspace for F.

We remark that C. K. Fong [2] has recently obtained some related results

concerning common invariant subspaces of F and K, under more general condi-

tions than those discussed here.
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