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THE IMAGE OF THE AHLFORS FUNCTION

C. DAVTD MTNDA1

■

Abstract. Let Q denote a maximal region on the Riemann sphere for bounded

holomorphic functions and p G Ü. We present a class of examples to show that the

complement in the unit disk of the image of the Ahlfors function for Q and p can

be a fairly general discrete subset of the unit disk.

1. Introduction. Let ß be a region on the Riemann sphere that supports noncon-

stant bounded holomorphic functions and let/? E ß. Set % = {/: /is holomorphic

in fi and/(ß) c B), where B = {z: \z\ < 1}. The Ahlfors function for ß and/? is

the unique function h in $ such that

h'(p) = max Re/'(b).
v  '     /ess Kr'

It is elementary to show that h(p) = 0. This paper is concerned with the image,

A(ß), of the Ahlfors function.

First, we survey the known results. Ahlfors [1] showed that h(ü) = B for regions

ß of finite connectivity that have no trivial boundary components. More precisely,

he proved that h expresses ß as an w-sheeted branched covering of B, where n is the

order of connectivity of ß. In the general situation Havinson [5] and Fisher [2]

demonstrated that B \ h(tt) has analytic capacity zero; that is, every bounded

holomorphic function defined on A(ß) may be extended to a bounded holomorphic

function on B. It is not difficult to give an example of a region ß such that

B \ h(Sl) ¥^ 0. For example, let K be a closed subset of B which has analytic

capacity zero and ß = B \ K. If 0 E ß, then the Ahlfors function h for ß and 0 is

the identity function, so h(ß) = B\ K. The question of the size of B \ h(ß)

becomes more interesting if it is required that ß be a maximal region for bounded

holomorphic functions in the sense of Rudin [11]. For such a maximal region ß,

Fisher [3] raised the question of whether the Ahlfors function must map ß onto B.

Roding [9] answered this question in the negative by exhibiting a maximal region ß

and a point/? £ ß such that the Ahlfors function for ß and/» omitted two values in

B. We shall extend Roding's result by showing that an Ahlfors function for a

maximal region can actually omit a fairly general discrete set of values in B.

2. The example. Suppose K is a discrete subset of B such that ifiR = 0 and

K = K, where Kdenotes the reflection of the set Kin the real axis. Set A = B\ K

and A+ = A n 77, where H = {z: Im(z) > 0}. Observe that the open interval
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(-1, 1) is a free boundary arc of A+. Let /: 77-*A+ be an analytic universal

covering projection of the lower half-plane 77 onto A+; of course,/is not uniquely

determined. The function / could be replaced by / » F, where T is any conformai

automorphism of 77. Let T be the associated group of cover transformations; that

is, T is the group of all Möbius transformations T which map 77 onto itself and

satisfy / o F = /. Later, we shall need the fact that T possesses a set of generators

each of which is parabolic. Let us establish this result now. Fix some point b E A+.

Because K n 77 is discrete, the fundamental group w,(A+, b) is generated by

countably many Jordan loops y¡ with the property that each y¡ contains exactly one

point of K n 77 in its interior. Recall that T and ir,(A+, b) are isomorphic as

follows. Fix a point S E 77 with/(Z?) = b. For y £ 7r,(A+, b) let y be the unique lift

of y having initial point b. The terminal point of y also lies over b and there is a

unique Ty £ T which sends b to the terminal point of y. The mapping y —> Ty is an

isomorphism. Since each y, is retractable to an isolated boundary point, it follows

that Fy is parabolic [7]. Thus, T is generated by the Ty, each of which is parabolic.

We use / to construct another covering via the Schwarz reflection principle.

Because (-1, 1) is a free boundary arc of A+, there is an open set o contained in the

extended real line R u {oo} such that/extends continuously to 77 u o and /maps

each component of a homeomorphically onto (-1, 1). Without loss of generality,

we may assume that oo £ o and that/(oo) = 0. Let ox be the component of o that

contains oo. Note that o is invariant under the group T; in fact, o = U T(ox),

where the union is taken over all F E T. We extend/to a holomorphic function on

ß = 77uau77by means of the Schwarz reflection principle: fiz) =f(z). We

continue to denote the extended holomorphic function by / It is elementary to

verify that /: ß —> A is an analytic covering, that /'(oo) > 0 and that the group of

cover transformations associated with this covering is exactly T.

Proposition 1. ß is a maximal region for bounded holomorphic functions.

Proof. Suppose that ß were not maximal. Let ß* be the unique maximal region

on the Riemann sphere which contains ß and has the property that every bounded

holomorphic function on ß extends to a bounded holomorphic function on ß*.

Obviously, any point of ß* \ ß lies on the real axis. Now, the covering projection /

itself extends to a holomorphic function f* : ß* —» B and f*(z) =f*(z). Select

a E ß* \ ß. Because/* is symmetric about the real axis, f*(a) = b £ (-1, 1). Select

r > 0 so small that the closed disk D = {z: \z — b\ < r) is evenly covered by /.

This means that/_1(7)) = U D¡, where 7), is a compact subset of ß, D¡ n D¡ = 0 if

i ¥=j and f\ D¡ is a homeomorphism of D¡ onto D. We claim that the sets D¡ cannot

cluster at a. If they did, then we could find a sequence (z„)"_i in ß with z„ E 37)l(n)

and zn —> a. This would yield f*(z„) —» b, a contradiction, since r = \f(z„) — b\ for

all n. Hence, we can find an open neighborhood V of a in ß* such that

V n f~\D) = 0 and f*(V) c D. Then V n ß = 0 since z E V n ß implies

f*(z) £ D which would give z £ f~x(D), a contradiction. Consequently, V c

ß* \ ß C R, which violates the fact that V is open. Hence, ß is maximal.
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Lemma. Let ax2 + bx + c be a real quadratic with distinct real roots r and s,

where r < s. Suppose E0 is a measurable set whose closure is contained in (r, s). Then

f-T--°>je ax   + bx + c

where E = U„eZ En and E„ = E0 + n(s — r) = (x + n(s — r): x E E0).

Proof. Without loss of generality, we may assume that a = 1. Our first step is to

show that we may specialize to the situation in which r = -1 and s = 1. Let

y -y(x) - V-r~5'    x = x(>,) = 2^s ~ ty + (s + r)l-

Note that y(r) = -1 and y(s) = 1. Then

f dx _ r dx _     2     r      dy

Je„ x2 + bx + c     h„ (x - r)(x - s)      s- rJFii y2 - i '

where F0 = { v(x): x £ E0) and Fn = F0 + 2n. The closure of F0 is contained in

(-1, 1). Thus, it suffices to show that

dy £  r       dy
0) o = /^-=2/

jf y1 — 1      -» Jf.>Fn y2 - 1

where F = U„eZF„.

Next, we establish (1) in the special case F0 = (a, b), where -1 <a < b < 1. By

direct calculation we obtain

f       & _Ii    (l + b    1 - a\
K0y2-\ 2 °g\ 1 - b ' 1 + a j'

r       ay ,    (b + 2n-la + 2n+l\ ^_

L y-rr-X=X°Ab + 2n+\- a + 2n-\}       " * °"

Then

V    f       dy I       la + 2N+\    b-2N-l\
„eíNJF„ y2 -I      2   °gU - 2N - 1 ' b + 2N + 1 }'

which implies that (1) is valid in this special case.

Clearly, the preceding work implies that (1) also holds in case F0 is a finite union

of open intervals. Now, consider any measurable set F0 whose closure is contained

in (-1, 1). Let e > 0 be given. Select u E (0, 1) so that the closure of F0 is

contained in (-u, u). Next, determine 70, a finite union of open intervals contained

in (-u, u), such that

m(F0 A 70) < t, = e/ S  —--—-,
-»   \(2\n\ - u)   - 1|

where F0 A 70 denotes the symmetric difference of the sets F0 and 70 and m

denotes Lebesgue measure [10, p. 62]. Set 7„ = 70 + 2n. Then

V f       dy      = yi f       *fr f      dy    \      y  f dy
&W-1    "^\4,v2-l     J,„y2-\)      ézJF^r„\y2-l\-
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Elementary estimates show that

f dy t)

•V„A/„|y2- H      \l2\n\-u,a/„|v2-1|      \(2\n\-uY-\\

Thus,

2

so the proof is complete.

-oo J f

dy

Fnyl-\

< e,

Proposition 2. If h is the Ahlfors function for ß and oo, then h ° T = h for all

F ET.

Proof. In order to prove that h ° F = h, it suffices to show that (h ° F)'(oo) =

h'(oo) since the Ahlfors function is unique. Let E = R \ a. Then F is a compact

subset of R and T(E) = £ for all F £ T. A result of Pommerenke [8] implies that

h(z\ = exp(g(z)) - 1

1 '      exp(g(z)) + 1 '

where g(z) = ±/Ä dÇ/(z - f )• Note that g(oo) = 0 and g'(oo) = (l/2)m(F), where

m(E) denotes the Lebesgue measure of F as a subset of R. Consequently,

h'(co) =\m(E) and

2exp(g°F(o0))     (o

[exp(g o r(oo)) + if
(h . F)'(oo) =      ~;™y-»(g o r)'(oo).

Clearly,  it is  enough  to  demonstrate  that g ° F(oo) = 0 and (g « F)'(oo) =

(1/2)W(F).
First, we demonstrate that (g ° F)'(oo) = g'(oo). Suppose T £ T and F is not

the identity, say T(z) = (az + b)/(cz + d), where a, 6, c, d £ R and ad — be = 1.

Note that c t^ 0; otherwise, F fixes the point oo which implies that F is the identity

because the group T is fixed point free on ß. Clearly, F(oo) = a/c. Now, we

calculate (g ° F)'(co) = g'(a/c)T'(<x>). From the definition of g, we obtain

1   /• ¿/f,/ a\      __1_ r dS

8 V c ) ~ ~ 2 JE (a/c _ ^)2 '

We make the change of variable w = T '(f) = (dÇ — b)/(-c¡¡ + a) in this integral

and obtain

äil-ziff*—^-
Here we have used the facts that T(E) = E and F preserves direction on E

because F(77) = 77. From F'(oo) = -1/c2, we obtain (g ° F)'(oo) =\m(E) =

g'(oo).

Second, we demonstrate that g » T(co) = 0 for any parabolic element F of the

group T. We assume that T has the same form as earlier. The fact that F is

parabolic implies that a + d = ±2; without loss of generality we may assume that
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a + d = 2. Then the unique fixed point of F is (a — l)/c E E. We want to show

that

We shall make a change of variable in this integral which has the effect of

converting T into a translation. Define

Rrz\_!_.
(a - \)/c - z '

then 7?"'(z) = (a — \)/c — 1/z. We make the change of variable f = R "'(<«?) and

obtain

g ° F(oo) = -r f        "      ,
2 JfU(ù3 + c)

where F = R(E) is invariant under U(z) = R ° F ° 7?_I(z) = z - c. Let F0 be the

part of F that is contained in the open interval between 0 = 7?(oo) and -c =

R(a/c); F0 is a compact subset of this open interval. Also, F= U„eZ F„, where

F„ = F0 + ne, since F is invariant under {/. By applying the preceding lemma, we

may conclude that g ° T(co) = 0.

The foregoing results imply that h ° T = h for any parabolic element F of T.

But, as we have already observed, T is generated by parabolic elements. It now

follows that h ° F = h for all F E T.

Proposition 3. If K is a discrete subset of B, then the analytic covering projection

f: ß^A/s the Ahlfors function for ß and oo.

Proof. Let h be the Ahlfors function for ß and oo. Then A'(oo) >/'(oo).

Proposition 2 shows that the function h is invariant under the group T. This implies

that h induces an analytic function h : A —» B such that h = h ° f. In fact, we may

simply define h(w) = h(z), where z £ ß is any point such that fiz) = w. The

function h is well defined since/(z,) = /(zj) if and only if there exists F E T with

z2 = T(zx). Because the set K is discrete, the Ahlfors function for A and the origin

is the identity function. Hence, h'(0) < 1, so that h'(oo) = A'(0)/'(oo) < /'(oo). This

gives / = h since the Ahlfors function is unique.

3. Summary and questions. Suppose that K is a discrete subset of B such that

K = K and K n R = 0- Then the analytic covering/: ß—»A= 7i\/r that was

constructed in the preceding section is the Ahlfors function for ß and oo. The

region ß is maximal for bounded holomorphic functions and /(ß) = B\ K. This is

an improvement of the example of Roding [9] in which K consisted of two points.

Hence, the Ahlfors function for a maximal region can omit a discrete set of values.

Recall that Havinson [5] and Fisher [2] have shown that the set of omitted values

always has analytic capacity zero. Therefore, it is still an open question whether the

Ahlfors function for a maximal region can actually omit an uncountable set of zero

analytic capacity. Gamelin [4] has obtained some results on the range of the

Ahlfors function.
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Other questions naturally suggest themselves. As usual, ß denotes a maximal

region for bounded holomorphic functions and h an Ahlfors function for ß. We

know that h need not map ß onto B. How does ß cover /t(ß)? For example, if ß is

infinitely connected, does each point of A(ß) have infinitely many preimages? Also,

does the function h: ß —» A(ß) belong to Bl or Blxl Here Bl and Blx are the classes

introduced by Heins [6] and generalize the notions of inner function and Blaschke

product to mappings between Riemann surfaces. In our example, the function/has

the property that each point of/(ß) has infinitely many preimages and the function

/ also belongs to the class Blx since it is a covering.

I would like to thank the referee for pointing out an error in the original version

of the paper.
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