THE IMAGE OF THE AHLFORS FUNCTION ## C. DAVID MINDA¹ ABSTRACT. Let Ω denote a maximal region on the Riemann sphere for bounded holomorphic functions and $p \in \Omega$. We present a class of examples to show that the complement in the unit disk of the image of the Ahlfors function for Ω and p can be a fairly general discrete subset of the unit disk. 1. Introduction. Let Ω be a region on the Riemann sphere that supports nonconstant bounded holomorphic functions and let $p \in \Omega$. Set $\mathfrak{B} = \{f: f \text{ is holomorphic in } \Omega \text{ and } f(\Omega) \subset B\}$, where $B = \{z: |z| < 1\}$. The Ahlfors function for Ω and p is the unique function h in \mathfrak{B} such that $$h'(p) = \max_{f \in \mathfrak{B}} \operatorname{Re} f'(p).$$ It is elementary to show that h(p) = 0. This paper is concerned with the image, $h(\Omega)$, of the Ahlfors function. First, we survey the known results. Ahlfors [1] showed that $h(\Omega) = B$ for regions Ω of finite connectivity that have no trivial boundary components. More precisely, he proved that h expresses Ω as an n-sheeted branched covering of B, where n is the order of connectivity of Ω . In the general situation Havinson [5] and Fisher [2] demonstrated that $B \setminus h(\Omega)$ has analytic capacity zero; that is, every bounded holomorphic function defined on $h(\Omega)$ may be extended to a bounded holomorphic function on B. It is not difficult to give an example of a region Ω such that $B \setminus h(\Omega) \neq \emptyset$. For example, let K be a closed subset of B which has analytic capacity zero and $\Omega = B \setminus K$. If $0 \in \Omega$, then the Ahlfors function h for Ω and 0 is the identity function, so $h(\Omega) = B \setminus K$. The question of the size of $B \setminus h(\Omega)$ becomes more interesting if it is required that Ω be a maximal region for bounded holomorphic functions in the sense of Rudin [11]. For such a maximal region Ω , Fisher [3] raised the question of whether the Ahlfors function must map Ω onto B. Roding [9] answered this question in the negative by exhibiting a maximal region Ω and a point $p \in \Omega$ such that the Ahlfors function for Ω and p omitted two values in B. We shall extend Roding's result by showing that an Ahlfors function for a maximal region can actually omit a fairly general discrete set of values in B. **2.** The example. Suppose K is a discrete subset of B such that $K \cap \mathbf{R} = \emptyset$ and $\overline{K} = K$, where \overline{K} denotes the reflection of the set K in the real axis. Set $\Delta = B \setminus K$ and $\Delta^+ = \Delta \cap H$, where $H = \{z : \text{Im}(z) > 0\}$. Observe that the open interval Received by the editors January 11, 1981 and, in revised form, March 18, 1981. AMS (MOS) subject classifications (1970). Primary 30A40, 30A42. ¹ This research was completed while the author was visiting the University of California, San Diego during 1980-81. 752 C. D. MINDA (-1, 1) is a free boundary arc of Δ^+ . Let $f : \overline{H} \to \Delta^+$ be an analytic universal covering projection of the lower half-plane \overline{H} onto Δ^+ ; of course, f is not uniquely determined. The function f could be replaced by $f \circ T$, where T is any conformal automorphism of \overline{H} . Let Γ be the associated group of cover transformations; that is, Γ is the group of all Möbius transformations T which map \overline{H} onto itself and satisfy $f \circ T = f$. Later, we shall need the fact that Γ possesses a set of generators each of which is parabolic. Let us establish this result now. Fix some point $b \in \Delta^+$. Because $K \cap H$ is discrete, the fundamental group $\pi_1(\Delta^+, b)$ is generated by countably many Jordan loops γ_i with the property that each γ_i contains exactly one point of $K \cap H$ in its interior. Recall that Γ and $\pi_1(\Delta^+, b)$ are isomorphic as follows. Fix a point $\tilde{b} \in \overline{H}$ with $f(\tilde{b}) = b$. For $\gamma \in \pi_1(\Delta^+, b)$ let $\tilde{\gamma}$ be the unique lift of γ having initial point \tilde{b} . The terminal point of $\tilde{\gamma}$ also lies over b and there is a unique $T_{\gamma} \in \Gamma$ which sends \tilde{b} to the terminal point of $\tilde{\gamma}$. The mapping $\gamma \to T_{\gamma}$ is an isomorphism. Since each γ_i is retractable to an isolated boundary point, it follows that T_{γ_i} is parabolic [7]. Thus, Γ is generated by the T_{γ_i} each of which is parabolic. We use f to construct another covering via the Schwarz reflection principle. Because (-1, 1) is a free boundary arc of Δ^+ , there is an open set σ contained in the extended real line $R \cup \{\infty\}$ such that f extends continuously to $\overline{H} \cup \sigma$ and f maps each component of σ homeomorphically onto (-1, 1). Without loss of generality, we may assume that $\infty \in \sigma$ and that $f(\infty) = 0$. Let σ_{∞} be the component of σ that contains ∞ . Note that σ is invariant under the group Γ ; in fact, $\sigma = \bigcup T(\sigma_{\infty})$, where the union is taken over all $T \in \Gamma$. We extend f to a holomorphic function on $\Omega = \overline{H} \cup \sigma \cup H$ by means of the Schwarz reflection principle: $f(\overline{z}) = \overline{f(z)}$. We continue to denote the extended holomorphic function by f. It is elementary to verify that $f: \Omega \to \Delta$ is an analytic covering, that $f'(\infty) > 0$ and that the group of cover transformations associated with this covering is exactly Γ . ## **PROPOSITION** 1. Ω is a maximal region for bounded holomorphic functions. PROOF. Suppose that Ω were not maximal. Let Ω^* be the unique maximal region on the Riemann sphere which contains Ω and has the property that every bounded holomorphic function on Ω extends to a bounded holomorphic function on Ω^* . Obviously, any point of $\Omega^* \setminus \Omega$ lies on the real axis. Now, the covering projection f itself extends to a holomorphic function $f^*\colon \Omega^* \to B$ and $f^*(\bar{z}) = \overline{f^*(z)}$. Select $a \in \Omega^* \setminus \Omega$. Because f^* is symmetric about the real axis, $f^*(a) = b \in (-1, 1)$. Select r > 0 so small that the closed disk $D = \{z \colon |z - b| \le r\}$ is evenly covered by f. This means that $f^{-1}(D) = \bigcup D_i$, where D_i is a compact subset of Ω , $D_i \cap D_j = \emptyset$ if $i \ne j$ and $f|D_i$ is a homeomorphism of D_i onto D. We claim that the sets D_i cannot cluster at a. If they did, then we could find a sequence $(z_n)_{n=1}^{\infty}$ in Ω with $z_n \in \partial D_{i(n)}$ and $z_n \to a$. This would yield $f^*(z_n) \to b$, a contradiction, since $r = |f(z_n) - b|$ for all n. Hence, we can find an open neighborhood V of a in Ω^* such that $V \cap f^{-1}(D) = \emptyset$ and $f^*(V) \subset D$. Then $V \cap \Omega = \emptyset$ since $z \in V \cap \Omega$ implies $f^*(z) \in D$ which would give $z \in f^{-1}(D)$, a contradiction. Consequently, $V \subset \Omega^* \setminus \Omega \subset \mathbb{R}$, which violates the fact that V is open. Hence, Ω is maximal. LEMMA. Let $ax^2 + bx + c$ be a real quadratic with distinct real roots r and s, where r < s. Suppose E_0 is a measurable set whose closure is contained in (r, s). Then $$\int_E \frac{dx}{ax^2 + bx + c} = 0,$$ where $E = \bigcup_{n \in \mathbb{Z}} E_n$ and $E_n = E_0 + n(s - r) = \{x + n(s - r): x \in E_0\}.$ PROOF. Without loss of generality, we may assume that a = 1. Our first step is to show that we may specialize to the situation in which r = -1 and s = 1. Let $$y = y(x) = \frac{2x - r - s}{s - r}, \qquad x = x(y) = \frac{1}{2}[(s - r)y + (s + r)].$$ Note that y(r) = -1 and y(s) = 1. Then $$\int_{E_n} \frac{dx}{x^2 + bx + c} = \int_{E_n} \frac{dx}{(x - r)(x - s)} = \frac{2}{s - r} \int_{F_n} \frac{dy}{y^2 - 1},$$ where $F_0 = \{y(x): x \in E_0\}$ and $F_n = F_0 + 2n$. The closure of F_0 is contained in (-1, 1). Thus, it suffices to show that (1) $$0 = \int_{F} \frac{dy}{v^2 - 1} = \sum_{-\infty}^{\infty} \int_{F_{\infty}} \frac{dy}{v^2 - 1},$$ where $F = \bigcup_{n \in \mathbb{Z}} F_n$. Next, we establish (1) in the special case $F_0 = (a, b)$, where -1 < a < b < 1. By direct calculation we obtain $$\int_{F_0} \frac{dy}{y^2 - 1} = -\frac{1}{2} \log \left(\frac{1 + b}{1 - b} \cdot \frac{1 - a}{1 + a} \right),$$ $$\int_{F} \frac{dy}{y^2 - 1} = \log \left(\frac{b + 2n - 1}{b + 2n + 1} \cdot \frac{a + 2n + 1}{a + 2n - 1} \right), \quad n \neq 0.$$ Then $$\sum_{n=-N}^{N} \int_{F_a} \frac{dy}{y^2 - 1} = \frac{1}{2} \log \left(\frac{a + 2N + 1}{a - 2N - 1} \cdot \frac{b - 2N - 1}{b + 2N + 1} \right),$$ which implies that (1) is valid in this special case. Clearly, the preceding work implies that (1) also holds in case F_0 is a finite union of open intervals. Now, consider any measurable set F_0 whose closure is contained in (-1, 1). Let $\varepsilon > 0$ be given. Select $u \in (0, 1)$ so that the closure of F_0 is contained in (-u, u). Next, determine I_0 , a finite union of open intervals contained in (-u, u), such that $$m(F_0 \triangle I_0) < \eta = \varepsilon / \sum_{-\infty}^{\infty} \frac{1}{\left|(2|n|-u)^2 - 1\right|},$$ where $F_0 \triangle I_0$ denotes the symmetric difference of the sets F_0 and I_0 and m denotes Lebesgue measure [10, p. 62]. Set $I_n = I_0 + 2n$. Then $$\left| \sum_{-\infty}^{\infty} \int_{F_n} \frac{dy}{y^2 - 1} \right| = \left| \sum \left(\int_{F_n} \frac{dy}{y^2 - 1} - \int_{I_n} \frac{dy}{y^2 - 1} \right) \right| \le \sum_{-\infty}^{\infty} \int_{F_n \triangle I_n} \frac{dy}{|y^2 - 1|}.$$ 754 C. D. MINDA Elementary estimates show that $$\int_{F_n \, \triangle \, I_n} \frac{dy}{|y^2 - 1|} \le \frac{\eta}{|(2|n| - u)^2 - 1|}.$$ Thus, $$\left|\sum_{-\infty}^{\infty}\int_{F_{-}}\frac{dy}{y^{2}-1}\right|\leqslant\varepsilon,$$ so the proof is complete. PROPOSITION 2. If h is the Ahlfors function for Ω and ∞ , then $h \circ T = h$ for all $T \in \Gamma$. PROOF. In order to prove that $h \circ T = h$, it suffices to show that $(h \circ T)'(\infty) = h'(\infty)$ since the Ahlfors function is unique. Let $E = \mathbb{R} \setminus \sigma$. Then E is a compact subset of \mathbb{R} and T(E) = E for all $T \in \Gamma$. A result of Pommerenke [8] implies that $$h(z) = \frac{\exp(g(z)) - 1}{\exp(g(z)) + 1},$$ where $g(z) = \frac{1}{2} \int_E d\zeta / (z - \zeta)$. Note that $g(\infty) = 0$ and $g'(\infty) = (1/2)m(E)$, where m(E) denotes the Lebesgue measure of E as a subset of \mathbb{R} . Consequently, $h'(\infty) = \frac{1}{4}m(E)$ and $$(h \circ T)'(\infty) = \frac{2 \exp(g \circ T(\infty))}{\left[\exp(g \circ T(\infty)) + 1\right]^2} (g \circ T)'(\infty).$$ Clearly, it is enough to demonstrate that $g \circ T(\infty) = 0$ and $(g \circ T)'(\infty) = (1/2)m(E)$. First, we demonstrate that $(g \circ T)'(\infty) = g'(\infty)$. Suppose $T \in \Gamma$ and T is not the identity, say T(z) = (az + b)/(cz + d), where $a, b, c, d \in \mathbb{R}$ and ad - bc = 1. Note that $c \neq 0$; otherwise, T fixes the point ∞ which implies that T is the identity because the group Γ is fixed point free on Ω . Clearly, $T(\infty) = a/c$. Now, we calculate $(g \circ T)'(\infty) = g'(a/c)T'(\infty)$. From the definition of g, we obtain $$g'\left(\frac{a}{c}\right) = -\frac{1}{2} \int_{E} \frac{d\zeta}{\left(a/c - \zeta\right)^{2}}.$$ We make the change of variable $\omega = T^{-1}(\zeta) = (d\zeta - b)/(-c\zeta + a)$ in this integral and obtain $$g'\left(\frac{a}{c}\right) = -\frac{1}{2}\int_{E} c^2 d\omega = -\frac{c^2}{2} m(E).$$ Here we have used the facts that T(E) = E and T preserves direction on E because T(H) = H. From $T'(\infty) = -1/c^2$, we obtain $(g \circ T)'(\infty) = \frac{1}{2}m(E) = g'(\infty)$. Second, we demonstrate that $g \circ T(\infty) = 0$ for any parabolic element T of the group Γ . We assume that T has the same form as earlier. The fact that T is parabolic implies that $a + d = \pm 2$; without loss of generality we may assume that a + d = 2. Then the unique fixed point of T is $(a - 1)/c \in E$. We want to show that $$g \circ T(\infty) = g\left(\frac{a}{c}\right) = \frac{1}{2} \int_{E} \frac{d\zeta}{a/c - \zeta} = 0.$$ We shall make a change of variable in this integral which has the effect of converting T into a translation. Define $$R(z) = \frac{1}{(a-1)/c - z};$$ then $R^{-1}(z) = (a-1)/c - 1/z$. We make the change of variable $\zeta = R^{-1}(\omega)$ and obtain $$g \circ T(\infty) = \frac{c}{2} \int_{F} \frac{d\omega}{\omega(\omega + c)},$$ where F = R(E) is invariant under $U(z) = R \circ T \circ R^{-1}(z) = z - c$. Let F_0 be the part of F that is contained in the open interval between $0 = R(\infty)$ and -c = R(a/c); F_0 is a compact subset of this open interval. Also, $F = \bigcup_{n \in \mathbb{Z}} F_n$, where $F_n = F_0 + nc$, since F is invariant under U. By applying the preceding lemma, we may conclude that $g \circ T(\infty) = 0$. The foregoing results imply that $h \circ T = h$ for any parabolic element T of Γ . But, as we have already observed, Γ is generated by parabolic elements. It now follows that $h \circ T = h$ for all $T \in \Gamma$. PROPOSITION 3. If K is a discrete subset of B, then the analytic covering projection $f: \Omega \to \Delta$ is the Ahlfors function for Ω and ∞ . PROOF. Let h be the Ahlfors function for Ω and ∞ . Then $h'(\infty) > f'(\infty)$. Proposition 2 shows that the function h is invariant under the group Γ . This implies that h induces an analytic function $\tilde{h} : \Delta \to B$ such that $h = \tilde{h} \circ f$. In fact, we may simply define $\tilde{h}(w) = h(z)$, where $z \in \Omega$ is any point such that f(z) = w. The function \tilde{h} is well defined since $f(z_1) = f(z_2)$ if and only if there exists $T \in \Gamma$ with $z_2 = T(z_1)$. Because the set K is discrete, the Ahlfors function for Δ and the origin is the identity function. Hence, $\tilde{h}'(0) \le 1$, so that $h'(\infty) = \tilde{h}'(0)f'(\infty) \le f'(\infty)$. This gives f = h since the Ahlfors function is unique. 3. Summary and questions. Suppose that K is a discrete subset of B such that $\overline{K} = K$ and $K \cap \mathbb{R} = \emptyset$. Then the analytic covering $f: \Omega \to \Delta = B \setminus K$ that was constructed in the preceding section is the Ahlfors function for Ω and ∞ . The region Ω is maximal for bounded holomorphic functions and $f(\Omega) = B \setminus K$. This is an improvement of the example of Roding [9] in which K consisted of two points. Hence, the Ahlfors function for a maximal region can omit a discrete set of values. Recall that Havinson [5] and Fisher [2] have shown that the set of omitted values always has analytic capacity zero. Therefore, it is still an open question whether the Ahlfors function for a maximal region can actually omit an uncountable set of zero analytic capacity. Gamelin [4] has obtained some results on the range of the Ahlfors function. 756 C. D. MINDA Other questions naturally suggest themselves. As usual, Ω denotes a maximal region for bounded holomorphic functions and h an Ahlfors function for Ω . We know that h need not map Ω onto B. How does Ω cover $h(\Omega)$? For example, if Ω is infinitely connected, does each point of $h(\Omega)$ have infinitely many preimages? Also, does the function $h: \Omega \to h(\Omega)$ belong to Bl or Bl_1 ? Here Bl and Bl_1 are the classes introduced by Heins [6] and generalize the notions of inner function and Blaschke product to mappings between Riemann surfaces. In our example, the function f has the property that each point of $f(\Omega)$ has infinitely many preimages and the function f also belongs to the class Bl_1 since it is a covering. I would like to thank the referee for pointing out an error in the original version of the paper. ## REFERENCES - 1. L. V. Ahlfors, Bounded analytic functions, Duke Math. J. 14 (1947), 1-11. - 2. S. D. Fisher, On Schwarz's lemma and inner functions, Trans. Amer. Math. Soc. 138 (1969), 229-240. - 3. _____, The moduli of extremal functions, Michigan Math. J. 19 (1972), 179-183. - 4. T. W. Gamelin, Cluster values of bounded analytic functions, Trans. Amer. Math. Soc. 225 (1977), 295-306. - 5. S. Ya. Havinson, Analytic capacity of sets, joint nontriviality of various classes of analytic functions and the Schwarz lemma in arbitrary domains, Amer. Math. Soc. Transl. (2) 43 (1964), 215–266. - 6. M. Heins, On the Lindelöf principle, Ann. of Math. 61 (1953), 440-473. - 7. A. Marden, I. Richards and B. Rodin, Analytic self-mappings of Riemann surfaces, J. Analyse Math. 18 (1967), 197-225. - 8. Ch. Pommerenke, Über die analytische Kapazität, Arch. Math. (Basel) 11 (1960), 270-277. - 9. E. Roding, Über die Wertannahme der Ahlfors funktion in beliebigen Gebieten, Manuscripta Math. 20 (1977), 133-140. - 10. H. L. Royden, Real analysis, 2nd ed., Macmillan, New York, 1968. - 11. W. Rudin, Some theorems on bounded analytic functions, Trans. Amer. Math. Soc. 78 (1955), 333-342. DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SAN DIEGO, LA JOLLA, CALIFORNIA 92093 Current address: Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221